Technische Anschlussbedingungen Mittelspannung

Gültig ab: 01.04.2019

Es gelten die allgemein anerkannten Regeln der Technik, insbesondere die VDE-Anwendungsregel „Technische Regeln für den Anschluss von Kundenanlagen an das Mittelspannungsnetz und deren Betrieb (TAR Mittelspannung)” (nachfolgend kurz „VDE-AR-N 4110“ genannt).

Die bis zu diesem Zeitpunkt geltenden Technischen Anschlussbedingungen Mittelspannung der Westnetz treten am gleichen Tage außer Kraft.

Inbetriebsetzungen von Kundenanlagen oder wesentliche Änderungen bestehender Kundenanlagen vor dem 27.04.2019 dürfen noch nach der bisher geltenden TAB Mittelspannung der Westnetz vom 01.09.2015 erfolgen.

Bezugsanlagen, für die der Anschlussnehmer bzw. Anschlussnutzer vor dem 27. April 2019 ein Netzanschlussbegehren gestellt hat und die bis zum 30.06.2020 in Betrieb gesetzt wurden, gelten als Bestandsanlagen und müssen jeweils (nur) die bisher geltenden TAB Mittelspannung der Westnetz vom 01.09.2015 erfüllen.

Weitere Übergangsregelungen für Erzeugungsanlagen:
- Wenn der Anschlussnehmer bzw. Anschlussnutzer vor dem 27. April 2019 eine Baugenehmigung oder eine Genehmigung nach BImSchG erhalten hat und die Erzeugungsanlage bis zum 30.06.2020 in Betrieb gesetzt wurde, gilt die Erzeugungsanlage als Bestandsanlage,
- wenn keine Baugenehmigung oder Genehmigung nach BImSchG erforderlich ist und der Anschlussnehmer bzw. Anschlussnutzer vor dem 27. April 2019 ein Netzanschlussbegehren gestellt hat und die Erzeugungsanlage bis zum 30.06.2020 in Betrieb gesetzt wurde, gilt die Erzeugungsanlage als Bestandsanlage

und muss jeweils (nur) die bisher geltenden TAB Mittelspannung der Westnetz vom 01.09.2015 erfüllen.

Der Anschlussnehmer bzw. Anschlussnutzer kann auf die Einstufung als Bestandsanlage verzichten. Der Verzicht ist schriftlich gegenüber der Westnetz zu erklären.
Inhaltsverzeichnis

Zu 1 Anwendungsbereich ...5
Zu 2 Normative Verweisungen ..5
Zu 3 Begriffe und Verweisungen ...5
Zu 4 Allgemeine Grundsätze ..5
Zu 4.1 - 4.2.3 Bauvorbereitung und Bau ..5
Zu 4.2.4 Vorbereitung der Inbetriebsetzung der Übergabestation (Punkte 11 bis 14 der Tabelle 1) ..5
Zu 4.3 Inbetriebnahme des Netzanschlusses/Inbetriebsetzung der Übergabestation7
Zu 4.4 Inbetriebsetzung der Erzeugungsanlage ..7
Zu 5 Netzanschluss ...8
Zu 5.1 Grundsätze für die Ermittlung des Netzanschlusspunktes ...8
Zu 5.2 – 5.4.2 Flicker ..8
Zu 5.4.3 Oberschwingungen und Zwischenharmonische und Supraharmonische8
Zu 5.4.5 – 5.4.6 Tonfrequenz-Rundsteuerung ...9
Zu 5.4.7 – 5.5 ...
Zu 5.4.8 – 5.5 ...
Zu 6 Übergabestation ..9
Zu 6.1 Baulicher Teil ..9
Zu 6.1.1 Allgemeines ...9
Zu 6.1.2 Einzelheiten zur baulichen Ausführung ...9
Zu 6.1.3 Hinweisschilder und Zubehör ..9
Zu 6.2 Elektrischer Teil ...10
Zu 6.2.1 Allgemeines ..10
Zu 6.2.2 Schaltanlagen ...11
Zu 6.2.3 Sternpunktkonzeption ...11
Zu 6.2.4 Erdschaltschließen ...14
Zu 6.3 Sekundärtechnik ...14
Zu 6.3.1 Allgemeines ..17
Zu 6.3.2 Fernwirk- und Prozessdatenübertragung an die netzführende Stelle17
Zu 6.3.3 Eigenbedarfs- und Hilfsenergieversorgung ...18
Zu 6.3.4 Schutzeinrichtungen ...19
Zu 6.4 Störerkennernrichtungen ...22
Zu 7 Abrechnungsmessung ...23
Zu 7.1 Allgemeines ..23
Zu 7.2 Zählersitzplatz ...23
Zu 7.3 Netz-Steuerplatz ..23
Zu 7.4 Messeinrichtungen ...23
Zu 7.5 Messwandler
Zu 7.6 Datenfernübertragung
Zu 7.7 Spannungsebene der Abrechnungsmessung

Zu 8 Betrieb der Kundenanlage
Zu 8.1 Allgemeines
Zu 8.2 Netzführung
Zu 8.3 Arbeiten in der Übergabestation
Zu 8.4 Zugang
Zu 8.5 Bedienung vor Ort
Zu 8.6 – 8.10
Zu 8.11 Besondere Anforderungen an den Betrieb von Ladeeinrichtungen für Elektrofahrzeuge
Zu 8.11.1 Allgemeines
Zu 8.11.2 Blindleistung
Zu 8.11.3 Wirkleistungsbegrenzung
Zu 8.11.4 Wirkleistungsabgabe bei Über- und Unterfrequenz
Zu 8.12 – 8.13

Zu 9 Änderungen, Außenbetriebnahmen und Demontage

Zu 10 Erzeugungsanlagen
Zu 10.1 Allgemeines
Zu 10.2 Verhalten der Erzeugungsanlage am Netz
Zu 10.2.1 Allgemeines
Zu 10.2.2 Statische Spannungshaltung/Blindleistungsbereitstellung
Zu 10.2.3 Dynamische Netzstützung
Zu 10.2.4 Wirkleistungsabgabe
Zu 10.2.5 Kurzschlusstromeintrag der Erzeugungsanlage
Zu 10.3 Schutzeinrichtungen und Schutzeinstellungen
Zu 10.3.1 Allgemeines
Zu 10.3.2 Kurzschlussschutzeinrichtungen des Anschlussnehmers
Zu 10.3.3 Entkupplungsschutzeinrichtungen des Anschlussnehmers
Zu 10.3.4 Anschluss der Erzeugungsanlage an die Sammelschiene eines Umspannwerks
Zu 10.3.5 Anschluss der Erzeugungsanlage im Mittelspannungsnetz
Zu 10.4 Zuschaltbedingungen und Synchronisierung
Zu 10.4.1 Allgemeines
Zu 10.4.2 Zuschalten nach Auslösung durch Schutzeinrichtungen
Zu 10.4.3 Zuschaltung mit Hilfe von Synchronisierungseinrichtungen
Zu 10.4.4 Zuschaltung von Asynchrongeneratoren
Zu 10.4.5 Kuppelschalter
Zu 10.5 Weitere Anforderungen an Erzeugungsanlagen
Zu 10.6 Modelle
Technische Anschlussbedingungen Mittelspannung Westnetz (Stand 01.04.2019) – Ergänzungen zur VDE-AR-N 4110 „TAR Mittelspannung“

Zu 11
Nachweis der elektrischen Eigenschaften für Erzeugungsanlagen .. 40
Zu 11.5 Inbetriebsetzungsphase .. 40
Zu 11.5.2 Inbetriebsetzung der Erzeugungseinheiten, des EZA-Reglers und ggf. weiterer Komponenten 40
Zu 11.5.5 Betriebsphase .. 41
Zu 12
Prototypen-Regelung ... 41
Anhang
.. 42
Zu Anhang A Begriffe .. 42
Zu Anhang B Erläuterungen .. 42
Zu Anhang C Weitere Festlegungen .. 43
Zu Anhang C.4 Prozessdatenumfang .. 43
Zu Anhang D Beispiele für Mittelspannungs-Netzanschlüsse .. 46
Zu Anhang E Vordrucke ... 60
Zu Anhang F Störschreiber ... 61
Anhang G Prüfleisten .. 61
Anhang H Wanderverdrahtung ... 61
H.1 Wanderverdrahtung – mittelspannungsseitige Messung .. 61
H.2 Wanderverdrahtung – niederspannungsseitige Messung .. 68
Anhang I Anforderungen an die EZA-Modelle gemäß Kapitel 10.6 .. 69
Anhang J Formblatt Prototypen-Regelung ... 71
Anhang J.1 Formblatt/Checkliste für Erzeugungsanlagen (P_{\text{Am}} > 950 kW) gem. Prototypen-Regelung (Kapitel 12 der VDE-AR-N 4110) ... 72
Anhang J.2 Formblatt/Checkliste für Erzeugungsanlagen (135 kW ≤ P_{\text{Am}} ≤ 950 kW) gem. Prototypen-Regelung (Kapitel 12 der VDE-AR-N 4110) .. 77
Anhang K Mitnahmeschaltung .. 81
Anhang L Parameter Bestandsanlagen (Inbetriebsetzung bis 26.04.2019, außer Übergangsregelung) 83
Anhang M Wesentliche Änderungen .. 84
Zu 1 Anwendungsbereich

Diese TAB Mittelspannung gelten auch für Änderungen in Kundenanlagen, die wesentliche Auswirkungen auf die elektrischen Eigenschaften der Kundenanlage (bezogen auf den Netzanschlusspunkt) haben.

Zu 2 Normative Verweisungen

- Keine Ergänzung -

Zu 3 Begriffe und Verweisungen

- Keine Ergänzung -

Zu 4 Allgemeine Grundsätze

Zu 4.1 - 4.2.3

- Keine Ergänzung -

Zu 4.2.4 Bauvorbereitung und Bau

Bei niederspannungsseitiger Abrechnungszählung sind die Leerlauf- und Kurzschlussverluste des Transformators Westnetz mitzuteilen.

Der Netzbetreiber übernimmt mit dem Sichtvermerk zum Übergabestationsprojekt ausdrücklich keine Verantwortung oder Haftung für die inhaltliche Richtigkeit der eingereichten Projektunterlagen.

Zu 4.2.5 Vorbereitung der Inbetriebsetzung der Übergabestation (Punkte 11 bis 14 der Tabelle 1)

Zur Prüfung der kundeneigenen MS-Kabelanlagen:
Vor Inbetriebnahme von kundeneigenen MS-Kabelanlagen ist nach DIN VDE 0105 und DGUV Vorschrift 3 § 5 eine Inbetriebnahmeprüfung durchzuführen.

Für kundeneigene Kabelanlagen im Schutzbereich des Verteilnetzes sind Prüfungen nach der in der Tabelle 4.2 angegebenen Stufe „D“ durchzuführen.

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Sichtprüfung</th>
<th>Kabelmantelprüfung</th>
<th>Spannungsprüfung</th>
<th>Teilentladungs (TE) - und Verlustfaktormessung (tan δ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>B</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
<td>nein</td>
</tr>
<tr>
<td>C</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>D</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Kabelprüfungen

Die Reihenfolge der Prüfungen ist wie folgt auszuführen:

1. Sichtprüfung
2. Kabelmantelprüfung
3. Spannungsprüfung
4. TE – und tan δ-Messung

Die Prüfbedingungen für die Kabelmantelprüfung und die Spannungsprüfung sind in den Tabellen 4.3 und 4.4 dargestellt.

Kabelmantelprüfung:

<table>
<thead>
<tr>
<th>Prüfverfahren</th>
<th>Kabeltyp</th>
<th>Prüfdauer (min)</th>
<th>Prüfspannung (kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Mantelprüfung mit Gleichspannung</td>
<td>VPE</td>
<td>5</td>
<td>5, 5, 5, 5, 5, 5</td>
</tr>
<tr>
<td>M. Mantelprüfung mit Gleichspannung</td>
<td>Bei PE- / TGL-Anteil</td>
<td>5, 3, 3, 3, 3, 3</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4.3: Kennwerte für die Kabelmantelprüfung
Spannungsprüfung:

<table>
<thead>
<tr>
<th>Isolierung</th>
<th>Inbetriebnahme- und Wiederholungsprüfung f = 0,1 Hz(^2)</th>
<th>Prüfpegel(^1) in (U_P = x U_0)</th>
<th>Prüfdauer(^3) [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td></td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>VPE</td>
<td></td>
<td>3</td>
<td>60(^4)</td>
</tr>
<tr>
<td>VPE/PVC</td>
<td></td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>TGL-PE/VPE</td>
<td></td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>Papier</td>
<td></td>
<td>3</td>
<td>30(^5)</td>
</tr>
<tr>
<td>VPE/Papier</td>
<td></td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>PVC/Papier</td>
<td></td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>TGL-PE/Papier</td>
<td></td>
<td>3</td>
<td>60</td>
</tr>
</tbody>
</table>

1) Effektivwert
4) Erfahrungen mit der VLF-Prüfspannung haben gezeigt, dass 90 % aller Fehler bei der Inbetriebnahme (Erst- und Wiederinbetriebnahme) in der ersten halben Stunde auftreten, daher können diese VLF-Prüfzeiten auf 30 Minuten für die Inbetriebnahmeprüfung reduziert werden.
5) Bei Massekabel sollte die VLF-Prüfspannung angewandt werden, um Überschläge durch hohe Raumladungen bei Gleichspannungsprüfung in den Schaltanlagen zu vermeiden.

Tabelle 4.4: Kennwerte für die Spannungsprüfung

Für kundeneigene Kabelanlagen im Schutzbereich des Anschlussnehmers wird die gleiche Verfahrensweise oder die Anwendung der DIN VDE 0276-620, Teil 10-C empfohlen.

Zu 4.3 Inbetriebnahme des Netzan schlusses/Inbetriebsetzung der Übergabestation

Vervollständigung Schutzprüfprotokolle

Gegebenenfalls zum Zeitpunkt der Schutzprüfung noch nicht erfolgte Auslösekontrollen der zugeordneten Schaltgeräte bzw. die Plausibilisierung der Betriebmesswerte in den Schutzeinrichtungen sind spätestens 6 Monate nach Inbetriebsetzung der Übergabestation nachzuholen und das vervollständigte Schutzprüfprotokoll ist Westnetz anschließend nachzureichen.

Betriebserlaubnisverfahren

Für Erzeugungsanlagen mit \(P_{A\text{max}} \geq 135\ kW\):

Zu 4.4 Inbetriebsetzung der Erzeugungsanlage

Betriebserlaubnisverfahren

Für alle Erzeugungsanlagen (\(P_{A\text{max}} < 135\ kW\), als auch \(P_{A\text{max}} \geq 135\ kW\):

Nach durch Westnetz gesichteter Konformitätserklärung wird die endgültige Betriebserlaubnis mit dem Formular E.16 erteilt.
Zu 5 **Netzanschluss**

Zu 5.1 **Grundsätze für die Ermittlung des Netzanschlusspunktes**

<table>
<thead>
<tr>
<th>Spannungsebene</th>
<th>Anschlussleistungen einzelner Kundenanlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschluss an ein 10-kV-Netz</td>
<td>200 kVA bis 3 MVA</td>
</tr>
<tr>
<td>Anschluss an eine 10-kV-Sammelschiene</td>
<td>3 MVA bis 11 MVA</td>
</tr>
<tr>
<td>Anschluss an ein 20-kV-Netz</td>
<td>200 kVA bis 5,5 MVA</td>
</tr>
<tr>
<td>Anschluss an eine 20-kV-Sammelschiene</td>
<td>5,5 MVA bis 20 MVA</td>
</tr>
<tr>
<td>Anschluss an 30-kV-Netze</td>
<td>3 MVA bis 11 MVA</td>
</tr>
<tr>
<td>Anschluss an eine 30-kV-Sammelschiene</td>
<td>11 MVA bis 20 MVA</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Anschlussleistungen einzelner Kundenanlagen in Abhängigkeit der Spannungsebene

Eigentumsgrenze:

Die Übergabestation von Erzeugungsanlagen nach dem Erneuerbare-Energien-Gesetz (EEG) ist in unmittelbarer Nähe des ermittelten Netzanschlusspunktes zu errichten (bis ca. 25 m Abstand).

Zu 5.2 – 5.4.2
- keine Ergänzung -

Zu 5.4.3 Flicker

Die konkret zu verwendenden Faktoren k_B, k_E und k_S werden im Netzbetreiberfragebogen benannt.

Zu 5.4.4 Oberschwingungen und Zwischenharmonische und Supraharmomiche

Die konkret zu verwendenden Faktoren k_B, k_E und k_S werden im Netzbetreiberfragebogen benannt.

Zu 5.4.5 – 5.4.6
- keine Ergänzung -
Zu 5.4.7 **Tonfrequenz-Rundsteuerung**
Die verwendeten Rundsteuerfrequenzen im Netzgebiet der Westnetz betragen 183 1/3 Hz und 216 2/3 Hz. In einigen wenigen Netzgebieten sind abweichende Frequenzen möglich.

Zu 5.4.8 – 5.5
- keine Ergänzung -

Zu 6 Übergabestation

Zu 6.1 **Baulicher Teil**

Zu 6.1.1 **Allgemeines**
Fabrikmerte Stationen für Hochspannung/Niederspannung gemäß DIN EN 62271-202 (VDE 0671-202) müssen die Störlichtbogenqualifikation IAC AB mit folgenden Kurzschlussströmen aufweisen:

- 10-kV-Netz: IAC AB 20 kA/1 s
- 20-kV-Netz: IAC AB 16 kA/1 s
- 30-kV-Netz: IAC AB 16 kA/1 s

Für Stationen gemäß DIN EN 61936-1 (VDE 0101-1) ist der Nachweis, dass das Gebäude der Übergabestation den zu erwartenden Überdruck infolge eines Lichtbogenfehlers standhalten kann, mittels Druckberechnung und statischer Beurteilung des Baukörpers bezüglich des ermittelten Maximaldruckes zu erbringen und Westnetz vorzulegen. Für die Druckberechnung sind die Bemessungs-Kurzzeitströme (1s) entsprechend Kapitel 6.2.1.1 zu berücksichtigen.

Übergabestationen, die in ein vorhandenes Gebäude integriert werden, sollen ebenerdig an Außenwänden erstellt werden.

Zu 6.1.2 **Einzelheiten zur baulichen Ausführung**

Zu 6.1.2.1 **Allgemeines**
- keine Ergänzung -

Zu 6.1.2.2 **Zugang und Türen**
Es sind Schließzylinder mit einer Schließseite (Halbzyliner) nach DIN 18252 mit einer Baulänge von 31,5 mm zu verwenden. Sofern notwendig, ist vom Anschlussnehmer ein geeigneter Schlüsselsafe anzubringen.

Zu 6.1.2.3 – 6.1.2.6
- keine Ergänzung -

Zu 6.1.2.7 **Trassenführung und Netzanschlusskabel**
Bei begehbaren Stationen sind Gebäudedurchdringungen gemäß der VDE-AR-N 4223 auszuführen. Im Fall von Gebäudestationen kann in begründeten Fällen davon abgewichen werden.

Zu 6.1.2.8 – 6.1.2.9
- keine Ergänzung -

Zu 6.1.3 **Hinweisschilder und Zubehör**

Zu 6.1.3.1 **Hinweisschilder**
Beispiel eines Übersichtsschaltplans der Mittelspannungsanlage (Übergabestation einschließlich des nachgelagerten kundeneigenen Mittelspannungsnetzes) siehe Anhang DSe.

Zu 6.1.3.2 **Zubehör**
Die Übergabestation ist zusätzlich zu dem in der VDE-AR-N 4110 aufgeführten Zubehör mit folgendem auszustatten:

- Stationsbuch
- Zur technischen Dokumentation der eingebauten Betriebsmittel gehört auch:
 - Übersichtsschaltplan der Primärtechnik
 - Verdrahtungsplan der Sekundärtechnik
- Anzahl und Querschnitt der Erdungs- und Kurzschließvorrichtung mit Erdungsstange sind in für die Station notwendiger Anzahl und Dimensionierung vorzuhalten.

Zu 6.2 Elektrischer Teil

Zu 6.2.1 Allgemeines

Zu 6.2.1.1 Allgemeine technische Daten

Alle Betriebsmittel der Übergabestation müssen für die durch den Kurzschlussstrom auftretenden thermischen und dynamischen Beanspruchungen bemessen sein. Unabhängig von den am Netzanschlusspunkt tatsächlich vorhandenen Werten sind die Betriebsmittel mindestens für nachfolgend aufgeführte Kenngrößen zu dimensionieren.

<table>
<thead>
<tr>
<th>Anschluss an 10-kV-Netze</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nennspannung</td>
<td>$U_n = 10, \text{kV}$</td>
</tr>
<tr>
<td>Nennfrequenz</td>
<td>$f_n = 50, \text{Hz}$</td>
</tr>
<tr>
<td>Isolationsspannung</td>
<td>$U_{im} = 12, \text{kV}$</td>
</tr>
<tr>
<td>Bemessungsstrom</td>
<td>$I_r = 630, \text{A}$</td>
</tr>
<tr>
<td>Thermischer Kurzschlussstrom</td>
<td>$I_{thn} = 20, \text{KA bei } T_k = 1, \text{s}$</td>
</tr>
<tr>
<td>Bemessungsstoßstrom</td>
<td>$I_p = 50, \text{KA}$</td>
</tr>
<tr>
<td>Bemessungs-Stehblitzstoßspannung</td>
<td>125 kV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anschluss an 20-kV-Netze</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nennspannung</td>
<td>$U_n = 20, \text{kV}$</td>
</tr>
<tr>
<td>Nennfrequenz</td>
<td>$f_n = 50, \text{Hz}$</td>
</tr>
<tr>
<td>Isolationsspannung</td>
<td>$U_{im} = 24, \text{kV}$</td>
</tr>
<tr>
<td>Bemessungsstrom</td>
<td>$I_r = 630, \text{A}$</td>
</tr>
<tr>
<td>Thermischer Kurzschlussstrom</td>
<td>$I_{thn} = 16, \text{KA bei } T_k = 1, \text{s}$</td>
</tr>
<tr>
<td>Bemessungsstoßstrom</td>
<td>$I_p = 40, \text{KA}$</td>
</tr>
<tr>
<td>Bemessungs-Stehblitzstoßspannung</td>
<td>125 kV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anschluss an 30-kV-Netze</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nennspannung</td>
<td>$U_n = 30, \text{kV}$</td>
</tr>
<tr>
<td>Nennfrequenz</td>
<td>$f_n = 50, \text{Hz}$</td>
</tr>
<tr>
<td>Isolationsspannung</td>
<td>$U_{im} = 36, \text{kV}$</td>
</tr>
<tr>
<td>Bemessungsstrom</td>
<td>$I_r = 630, \text{A}$</td>
</tr>
<tr>
<td>Thermischer Kurzschlussstrom</td>
<td>$I_{thn} = 16, \text{KA bei } T_k = 1, \text{s}$</td>
</tr>
<tr>
<td>Bemessungsstoßstrom</td>
<td>$I_p = 40, \text{KA}$</td>
</tr>
<tr>
<td>Bemessungs-Stehblitzstoßspannung</td>
<td>170 kV</td>
</tr>
</tbody>
</table>
Im Einzelfall kann Westnetz abweichende Werte vorgeben (z.B. bei Anschlüssen an die Sammelschiene eines Westnetz-Umspannwerks). In diesem Fall ist die geforderte Störlichtbogenklassifikation für diese abweichenden Werte nachzuweisen (Kapitel 6.1.1 und 6.2.1.3).

Auf Anfrage stellt Westnetz dem Anschlussnehmer zur Einstellung des kundeneigenen Schutzes und für Netizrückwirkungsbetrachtungen folgende Daten zur Verfügung:
- Anfangskurzschlusswechselstrom aus dem Netz der Westnetz am Netzanschlusspunkt (ohne Berücksichtigung des Kurzschlussstrombeitrages der Erzeugungsanlagen);
- Fehlerklärungszeit des Hauptschutzes aus dem Netz der Westnetz am Netzanschlusspunkt.

Zu 6.2.1.2 Kurzschlussfestigkeit
In Einzelfällen kann Westnetz vom Anschlussnehmer Einrichtungen zur Begrenzung des von der Kundenanlage in das Westnetz-Netz eingespeisten Anfangskurzschlusswechselstromes verlangen, um Betriebsmittel zu schützen bzw. Schutzfunktionen im Netz zu gewährleisten. Der Anschlussnehmer trägt die Kosten der dadurch in seiner Anlage entstehenden Maßnahmen.

Zu 6.2.1.3 Schutz gegen Störlichtbogen
Es sind folgende IAC-Klassifizierungen und Prüfwerte für MS-Schaltanlagen einzuhalten:
- In nicht begehbaren Stationen bzw. begehbaren Stationen bei Wandaufstellung:
 - 10-kV-Schaltanlagen: IAC A FL 20 kA/1 s;
 - 20-kV-Schaltanlagen: IAC A FL 16 kA/1 s;
 - 30-kV-Schaltanlagen: IAC A FL 16 kA/1 s;
- In begehbaren Stationen bei Aufstellung der MS-Schaltanlage im freien Raum:
 - 10-kV-Schaltanlagen: IAC A FLR 20 kA/1 s;
 - 20-kV-Schaltanlagen: IAC A FLR 16 kA/1 s;
 - 30-kV-Schaltanlagen: IAC A FLR 16 kA/1 s.

Der Nachweis der Einhaltung ist Westnetz auf Deutsch vorzulegen.

Zu 6.2.1.4 Isolation
- keine Ergänzung -

Zu 6.2.2 Schaltanlagen

Zu 6.2.2.1 Schaltung und Aufbau
Die Schaltfelder in den Übergabestationen sind in folgender Reihenfolge aufzubauen (vorzugsweise von links nach rechts):
- Netzseitige(s) Eingangsschaltfeld(er) für den Anschluss an das Netz der Westnetz,
- Übergabe(schalt)-/Messfeld,
- Abgangsfeld(er).

Anschluss an 10/20-kV-Netze
Bei dem Anschluss von Kundenanlagen (Bezugsanlagen und Erzeugungsanlagen) an 10/20-kV-Netze ist für Schaltung und Aufbau der Übergabestation die Bemessungs-Scheinleistung der an die Übergabestation angeschlossenen Transformatoren maßgebend:

- bis zu Bemessungsleistungen von ≤ 1 MVA je Transformator erfolgt die Absicherung über Lasttrennschalter mit untergebauten Hochspannungssicherungen. Der Einsatz von Leistungsschaltern mit unabhängigem Maximalstromzeitschutz ist zulässig;
- für Transformatoren mit Bemessungsleistungen > 1 MVA sind Leistungsschalter mit unabhängigem Maximalstromzeitschutz erforderlich;
- bei mehr als einem Abgangsfeld auf der Kundenseite ist ein Übergabeschaltfeld vorzusehen.

In jedem Fall muss sichergestellt werden, dass die gewählte Schutzeinrichtung das fehlerhafte Kundennetzteil oder die gesamte Kundenanlage automatisch und selektiv zu vorhandenen Schutzeinrichtungen der Westnetz abschaltet.

Im Übergabeschaltfeld und in den Kunden-Abgangsfeldern ist der Einsatz von Leistungstrennschaltern möglich.

Anschluss an 30-kV-Netze

Der Anschluss von Kundenanlagen (Bezugsanlagen und Erzeugungsanlagen) an das 30-kV-Netz erfolgt über eine Übergabestation mit Leistungsschalter im Übergabeschaltfeld. Im Falle eingeschlechter 30-kV-Kundenanlagen sind auch die netzseitigen Eingangsschaltfelder mit Leistungsschaltern auszustatten. Wenn Kundenanlagen im Stich angeschlossen werden, so müssen im netzseitigen Eingangsschaltfeld zwei Kabelsysteme anschließbar sein.

Anschluss an 10-/20-/30-kV-Sammelschiene eines UW

Der Anschluss von Kundenanlagen (Bezugsanlagen und Erzeugungsanlagen) an die Sammelschiene eines UW erfolgt über eine Übergabestation, der in jedem Fall ein Leistungsschalter im Schaltfeld des UWs vorgelagert ist.

Erdungsmöglichkeiten auch bei ausgelagerten Betriebsmitteln

Es sind mindestens Erdungsmöglichkeiten entsprechend DIN VDE 0105-100 vorzusehen.

Sofern sich Betriebsmittel ausgelagert außerhalb der Übergabestation befinden, an denen z.B. der Netzbetreiber bzw. der Messstellenbetreiber Arbeiten ausführen können muss (z.B. Transformator, Abrechnungsmessung), sind nach Möglichkeit betriebsmittelnah Erdungsmöglichkeiten vorzusehen.

Zu 6.2.2.2 Ausführung

Durchführen eines Phasenvergleiches und Feststellen der Spannungsfreiheit

In den Feldern, die sich im Verfügungsbereich der Westnetz befinden, ist ein allpoliges, kapazitives Spannungsprüfsystem mit dem Messprinzip HR oder LRM (gemäß DIN EN 61243-5 (VDE 0682 Teil 415)) zu verwenden. Der Schnittstellenschluss erfolgt über isolierte Messbuchsen.

Bei Anschluss in Netzen bis 20-kV muss die Funktionssicherheit der Systeme für die Betriebsspannungen 10-kV bis 20-kV gewährleistet sein.

Geräte zur Kabelfehlerortung/Kabelprüfung

Es muss eine Anschlussmöglichkeit für Geräte zur Kabelfehlerortung/Kabelprüfung ohne Lösen von Endverschlüssen bzw. Steckendverschlüssen gegeben sein. Alle Betriebsmittel der Übergabestation, die während einer Kabelfehlerortung/Kabelprüfung mit dem Kabel galvanisch verbunden bleiben, müssen für die verwendeten Prüfspannungen von AC 45 bis 65 Hz - 2 x U₀ (Prüfdauer 60 min) bzw. AC 0,1 Hz - 3 x U₀ (Prüfdauer 60 min) ausgelegt sein.

Kurzschlussanzeiger

Bei einer Einschleifung bzw. bei mehreren netzseitigen Eingangsschaltfeldern sind die netzseitigen Eingangsschaltfelder mit elektronischen Kurzschlussanzeigern auszurüsten. Betreibt der Anschlussnehmer bzw. Anschlussnutzer kein eigenes
Mittelspannungsnetz, ist in diesem Fall die Ausrüstung von „n-1“-netzseitigen Eingangsschalteinrichtungen beginnend mit dem linken Schaltfeld (Frontansicht) mit Kurzschlussanzeigern ausreichend.

Luftisolierte Schaltanlagen

Der Anschluss der Netzkabel (10/20 kV, kunststoffisolierter) erfolgt über Endverschlüsse (max. Durchmesser 62 mm; max. Länge 350 mm, Kabelschuhanschlussbohrung DMR 13 mm) gemäß DIN VDE 0278-629-1. Zur Befestigung der Netzkabel sind Kabelhalteschienen einschließlich geeigneter Kabelschellen (Kabel DMR: 26-38 mm) vorzusehen.

Das Abstandsmaß von der Mitte der Außenkonusdurchführung bis zur Kabelbefestigungsschelle beträgt ca. 400 mm. Für den Erdanschluss der Kabelschirme sind je Außenleiter Anschlussschrauben M 10 erforderlich. Der Anschluss der Netzkabel 30 kV ist mit Westnetz abzustimmen.

Gasisolierte Schaltanlagen

Bei Einsatz von hermetisch metallgekapselten Mittelspannungsanlagen ist der Fülldruck des verwendeten Isoliermediums im Kessel zu überwachen.

Der Betriebszustand der Schaltanlage muss eindeutig an der Schaltanlage erkennbar sein.

Handschalthebel und Antriebsöffnungen für Lasttrennschalter und Erdungsschalter

Die Antriebsöffnungen für Lasttrennschalter und Erdungsschalter müssen den jeweiligen Schaltstellungsanzeigen eindeutig zugeordnet werden können. Für Erdungsschalter müssen diese farblich rot gekennzeichnet sein.

Verschließbarkeit von Schaltgeräten und Antriebsöffnungen

Die im Verfügungsbereich der Westnetz stehenden Schaltfelder und das Übergabeschaltfeld müssen grundsätzlich mit einem Bügelschloß - Durchmesser 6-8 mm - abschließbar sein.

Für alle Antriebsöffnungen sind mindestens im Verfügungsbereich der Westnetz Abschließvorrichtungen für den Einsatz von Bügelschlössern - Durchmesser 6-8 mm - vorzusehen.

Zu 6.2.2.3 Kennzeichnung und Beschriftung

- keine Ergänzung -

Zu 6.2.2.4 Schaltgeräte

Zu 6.2.2.5 Verriegelungen

Der Erdungsschalter muss gegen den zugehörigen Lasttrennschalter verriegelt sein. Separate Türen/Abdeckungen zum Kabelanschlussraum und/oder HH-Sicherungsraum dürfen nur bei eingeschaltetem Erdungsschalter zu Öffnen sein. In Kabelschaltfeldern muss darüber hinaus für die Dauer der Kabelfehlerortung/Kabelprüfung die Möglichkeit bestehen, diese Verriegelung bewusst außer Kraft zu setzen.

Das Einschalten des Lasttrennschalters darf nur bei wieder eingesetzter Kabelraumabdeckung oder geschlossener Tür möglich sein.

Die Verriegelungen für den Anschluss von Kundenanlagen sind in den Bildern des Anhanges D dargestellt.

Zu 6.2.2.6 Transformatoren

Für die Anzapfungen der Transformatoren ist ein Einstellbereich von -4 % / 0 / +4 % bzw. -5% / -2,5% / 0 / +2,5% / +5 % empfohlen.

Bei Anschluss von Kundenanlagen an Netze mit einer Versorgungsspannung von 30 kV ist die Auswahl der Transformatoren mit Westnetz abzustimmen.

Zu 6.2.2.7 Wandler

Weitere Anforderungen sind in Kapitel 7.5 beschrieben.

Zu 6.2.2.8 Überspannungsableiter

In gewitterreichen Gebieten wird der Einsatz von Überspannungsableitern in der Kundenanlage empfohlen, wenn der Anschluss an Freileitungsnetze, welche über offenes Gelände verlaufen, erfolgt und die Kundenstation im Abstand von 15 m bis 700 m zur MS-Freileitung über Kabel im Stich angeschlossen ist.

Zu 6.2.3 Sternpunktbewandlung

Ausnahme von dieser Regelung stellen weitläufig nachgelagerte Kundennetze dar, bei denen die Kompensation von Erdschlussströmen - durch den Kunden selbst oder in seinem Auftrag - in Absprache mit dem Westnetz durchzuführen ist.

Für die Sternpunktbewandlung der der Übergabestation nachgelagerten, galvanisch getrennten Mittel- und Niederspannungsnetze ist der Anschlussnehmer selbst verantwortlich.

Zu 6.2.4 Erdungsanlage

Die Mittelspannungsnetze der Westnetz werden in der Regel kompensiert betrieben.

Für die elektrische Bemessung der Erdungsanlagen in Mittelspannungsnetzen ist grundsätzlich ein Erdfehlerstrom (Erdschlusserststrom) von 60 A zu Grunde zu legen. In Ausnahmefällen können durch Westnetz andere Erdfehlerströme als Bemessungsgrundlage genannt werden. Es ist sicherzustellen, dass die zulässigen Berührungsspannungen nach DIN EN 50522 (VDE 0101-2) eingehalten werden. Die Erdungsanlage der Übergabestation ist thermisch für den Doppelerdschlussstrom \(I_{\text{KEE}} \geq 7,5 \text{ kA} \) für \(T_1 = 1 \text{ s} \) auszulegen (z.B. durch Verbindung des Ringerders und der weiteren Erdungsanlage mit der Haupterdungsschiene der Übergabestation mit mindestens NYY-O 1x50 mm²). Die
Erdungsanlage ist in Abhängigkeit der Bodenverhältnisse und der Stationsbauform als Fundament-, Ring-, Strahlen- oder Tiefenerder oder einer Kombination aus diesen herzustellen.

Beispielhafte Darstellung einer Erdungsanlage

In Gebieten mit globalem Erdungssystem (geschlossener Bebauung) ist eine gemeinsame Erdungsanlage für Hochspannungsschutzerdung (Anlagen > 1 kV) und Niederspannungsbetriebserdung aufzubauen. Es wird dort kein spezieller Nachweis für die Erdungsimpedanz gefordert. Unbeschadet dessen ist die Erdungsanlage mit einer Erdungsprüfzange auf niederohmige Wirksamkeit zu prüfen.

Darüber hinaus ist, unabhängig ob innerhalb oder außerhalb geschlossener Bebauung, durch den Errichter der Stationserdungsanlage nachzuweisen, dass eine ordnungsgemäße und funktionierende Erdungsanlage errichtet wurde. Neben der Anfertigung von Lageplänen und Angaben zum verwendeten Material/Längen muss die elektrische Wirksamkeit der Erdungsanlage bereits vor dem Anschluss an das Erdungssystem der Westnetz und die Kabelanlagen des Anschlussnehmers messtechnisch nachgewiesen werden. In Abhängigkeit des spezifischen Erdwiderstandes wird im Allgemeinen ein Ausbreitungswiderstand von 2 bis 20 \(\Omega \) je Erdungsanlage erreicht (Richtwert), im Einzelfall auch höher. Liegen die Werte bei sonst vorschriftsmäßig errichteter Erdungsanlage dagegen deutlich höher als 20 \(\Omega \), so sind gesonderte Abstimmungen mit Westnetz erforderlich. In jedem Fall ist Westnetz das ausgefüllte Erdungsprotokoll (siehe Anhang E.6) zu übergeben.

In der Nähe der Prüftrennstelle ist der zum Erder führende Erdungsleiter so auszuführen, dass er problemlos mit einer Erdungsprüfzange mit 32 mm Umschließungsdurchmesser umfasst werden kann. Auf die Prüftrennstelle kann
verzichtet werden, wenn sich die Verbindungsstelle zum Erdungsleiter im allgemein zugänglichen Bereich (z.B. Maste) befindet.

Im Folgenden ist eine Übersicht für die gemeinsame Mittel- und Niederspannungs-Erdungsanlage in der kundeneigenen Übergabestation dargestellt.

[Diagramm]

1. Natürlicher Erder oder Erdungsleiter
2. Künstlicher Erder im Außenbereich
3. Erdungsleiter für das NS-Netz
4. Separate Erdungsleiter können dann entfallen, wenn zu erdende Teile über Rahmen, Baukörper, leitfähige Scharniere o.ä. zuverlässig und Stromtragfähig geerdet sind!
5. Wichtiger Hinweis: Die Erdungsprüfung dient nur der Prüfung des Stationserders auf niedrige Wirksamkeit (Richtwert <20 Ohm), die Erdungsmessung (der Erdungsimpedanz des Erdungssystems TrSt+NS-Netz) kann nur mit einer Meßbrücke oder gleichwertigem Verfahren erfolgen. Die zulässige Erdungsimpedanz hängt u.a. vom Fehlerstrom auf der MS-Seite ab (Sternpunktbehandlung des MS-Netzes). Bei globalem Erdungssystem (größere Siedlungen, Dörfer, Städte) kann die Erdungsmessung entfallen (DIN VDE 0101).
Ergänzungen zur VDE-AR-N 4110 „TAR Mittelspannung“

Zu 6.3 Sekundärtechnik
Zu 6.3.1 Allgemeines
Zu 6.3.2 Fernwirk- und Prozessdatenübertragung an die netzführende Stelle

In diesem Kapitel ist die für netzbetriebliche Zwecke erforderliche fernwirktechnische Anbindung von Kundenanlagen an die Netzleitstelle der Westnetz beschrieben. Die Fernsteuerung (Begrenzung der Wirkleistungsabgabe) und die Ist-Leistungserfassung von Erzeugungsanlagen im Rahmen des Netz sicherheitsmanagements ist in Kapitel 10.2.4 „Netzsicherheitsmanagement“ beschrieben.

Verfügungsbereich

Anschluss an 10/20-kV-Netze

Der Begriff „Verfügungsbereich“ ist in Kapitel 3.1.60 erläutert. Für Bezugs- und Erzeugungsanlagen gelten hierzu folgende Bedingungen:

- Alle Schaltgeräte im Verfügungsbereich der Westnetz müssen für Westnetz zugänglich und vor Ort zu betätigen sein;
- bei dem Anschluss von Kundenanlagen an ein vom Anschlussnehmer allein genutztes Schaltfeld in einem Westnetz-eigenen Umspannwerk wird das Schaltfeld von der netzführenden Stelle der Westnetz ferngesteuert;
- bei der Einschleifung von Kundenanlagen mit einer vereinbarten Netzanschlusskapazität > 500 kVA für den Energiebezug werden die Eingangsschaltfelder durch Westnetz ferngesteuert.

In besonderen Fällen mit erhöhten Anforderungen an die Versorgungszuverlässigkeit können individuelle Netzanschlusskonzepte mit Westnetz abgestimmt werden; die Kosten sind durch den Anschlussnehmer bzw. Anschlusssnutzer zu tragen.

Anschluss an 30-kV-Netze

Für Bezugs- und Erzeugungsanlagen gelten folgende Bedingungen:

- Alle im Verfügungsbereich des Anschlussnehmers bzw. Anschlusssnutzers stehenden Schalter werden auch von ihm geschaltet;
- alle im Verfügungsbereich der Westnetz stehenden 30-kV-Schaltgeräte werden von der netzführenden Stelle der Westnetz ferngesteuert, auch netzseitige 30-kV-Erdungsschalter;
- der 30-kV-Übergabeleistungsschalter wird von der netzführenden Stelle der Westnetz lediglich per Fernsteuerung ausgeschaltet.

Meldungen, Messwerte

Anschluss an 10/20-kV-Netze

Es gelten die nachfolgend aufgeführten Grenzwerte:

- Spannung: Gesamtmessfehler \(\leq 0,5 \% \);
- Strom, Wirk- und Blindleistung: Gesamtmessfehler \(\leq 3 \% \).

Anschluss an 30-kV-Netze

Aus der 30-kV-Übergabestation überträgt Westnetz die in Anhang C.4 aufgeführten Meldungen und Messwerte zu seiner netzführenden Stelle. Die Messwerte Spannung, Strom, Wirk- und Blindleistung sind vom Anschlussnutzer zu erfassen bzw. kontinuierlich als Effektivwerte zu messen.

Es gelten die nachfolgend aufgeführten Grenzwerte:
- Spannung: Gesamtmessfehler ≤ 1 %;
- Strom, Wirk- und Blindleistung: Gesamtmessfehler ≤ 3 %.

Fernwirksotechnische Anbindung an die netzführende Stelle der Westnetz

Für die informationstechnische Anbindung der Übergabestation an die netzführende Stelle der Westnetz stellt der Anschlussnehmer in der Übergabestation auf seine Kosten eine fernwirksotechnische Einrichtung auf. Hierin enthalten ist die Planung, Montage und Inbetriebnahme sowie der anlagenseitige Bittest mit der netzführenden Stelle der Westnetz.

Westnetz richtet auf seine Kosten die erforderliche fernwirksotechnische Verbindung ein. Der Einbauplatz für die hierfür erforderlichen Komponenten ist durch den Anschlussnehmer in der Übergabestation zur Verfügung zu stellen. Die fernwirksotechnische Verbindung beinhaltet auch die Planung, Montage und Inbetriebnahme der Einrichtungen der Nachrichtentechnik.

Ggf. erforderliche bauliche Anpassungen am Stationsbaukörper (z.B. Durchführung für den Anschluss einer Antenne) sind zwischen Westnetz und dem Anschlussnehmer abzustimmen.

Anschluss an 10/20-kV-Netze

Es ist grundsätzlich keine informationstechnische, fernwirksotechnische Anbindung an die netzführende Stelle der Westnetz erforderlich. Ausnahmen bilden Erzeugungsanlagen, Speicher gemäß Kapitel 10.2.4 „Wirkleistungsabgabe“, Ladeeinrichtungen für Elektrofahrzeuge gemäß Kapitel 8.10 und eingeschleifte Kundenanlagen mit einer vereinbarten Netzanschlusskapazität > 500 kVA für den Energiebezug gemäß Kapitel 6.2.2.1.

Zu 6.3.3 Eigenbedarfs- und Hilfsenergieversorgung

Bei Erzeugungs- und Mischanlagen ist der übergeordnete Entkupplungsschutz mit U>>, U>, U< und ggf. Qтель & U< Schutz aus einer Batterie oder USV zu versorgen, wobei der Ausfall der Hilfsenergie zum unverzögerten Auslösen des zugeordneten Schaltgerätes führen muss und durch eine Unterspannungsauslösung (z.B. Nullspannungsspule) zu
realisieren ist. Die Netzschutzeinrichtungen und der Kurzschlussschutz des Anschlussnehmers dürfen aus der Batterie mit versorgt werden.

Im Falle einer Fernsteuerung ist eine Batterie oder USV zwingend erforderlich.

Eine Erdschlussüberwachung der Hilfsenergieversorgung ist nicht erforderlich.

Die Hilfsenergieversorgung erfolgt aus dem gemessenen Bereich. Davon unbenommen dürfen Messgrößen aus dem ungemessenen Bereich erfasst werden.

Zu 6.3.4 Schutzeinrichtungen

Zu 6.3.4.1 Allgemeines

Nach einer Schutzauslösung in der Übergabestation ist in Bezug auf die Wiederzuschaltung gemäß Kapitel 8.8 (Bezugsanlagen) bzw. gemäß Kapitel 10.4.2 (Erzeugungsanlagen) zu verfahren.

Zu 6.3.4.2 Netzschutzeinrichtungen

Zu 6.3.4.3 Kurzschluss-Schutzeinrichtungen des Anschlussnehmers

Zu 6.3.4.3.1 Allgemeines

Die nachfolgenden Grundsätze gelten für Kurzschluss-Schutzeinrichtungen in einem Übergabeschaltfeld.

− Als Kurzschluss-Schutz wird ein unabhängiger Maximalstromzeitschutz eingesetzt. Gegebenenfalls können auch andere Schutzprinzipien (z.B. Überstromrichtungszeitschutz, Distanzschutz, Signalvergleich) erforderlich sein. Ist aus Sicht des Anschlussnehmers oder Anschlussnutzers zusätzlich noch ein Überlastschutz erforderlich und lassen sich die beiden Schutzfunktionen - z.B. wegen der Höhe des Stromwandlers-Primärstromes - nicht durch eine Schutzeinrichtung realisieren, so muss der Anschlussnehmer eine weitere Schutzeinrichtung und ggf. zusätzliche Stromwandler installieren;
− Bei Anschluss von Erzeugungsanlagen an 30-kV-Netze ist im Übergabeschaltfeld ein Distanzschutz einzusetzen;
− Strom- und Spannungswandler sind so anzuordnen, dass sie im Selektionsabschnitt des Übergabeleitungsschalters zum Einbau kommen. Dabei sind die Spannungswandler im Schutzabschnitt der Stromwandler, also hinter den Stromwandlern in Richtung Kundenanlage, anzuordnen;
− Die Wandler für die Mess- und Zähleinrichtungen sind nach Kapitel 7.5 auszuführen;
− In erdschlusskompensierten MS-Netzen mit KNOSPE wird im Übergabeschaltfeld die Erdsschlussrichtungserfassung über die Erdstromstufe des 4-poligen UMZ-Schutzes realisiert. Bei Einsatz eines Lasttrennschalters im Übergabeschaltfeld gelten alternativ die Festlegungen aus Kapitel 6.2.2.2 zur Ausführung der Erdsschlussrichtungserfassung mit Hilfe von Kurzschlussanzeigen.
− In erdschlusskompensierten MS-Netzen ohne KNOSPE wird im Übergabeschaltfeld die Erdsschlussrichtungserfassung über ein Erdsschlussrichtungsmessrelais, welches nach dem Wischerprinzip arbeitet, eingesetzt.
− Westnetz teilt auf Anfrage die Art der Sternpunktbeweisung im betreffenden MS-Netz mit.
− Sofern keine durchgängige Zustandsaufzeichnung der Kurzschluss-Schutzeinrichtungen durch den Anschlussnutzer erfolgt (z. B. mit kundeneigener Fernwirktechnik), muss eine Störung der Kurzschluss-Schutzeinrichtung zur Auslösung des zugeordneten Schalters führen;
− Um Westnetz eine Analyse des Störverlaufes zu ermöglichen, sind Westnetz in Störungsfall sämtliche Schutzzustandsdaten und Störungsaufzeichnungen (Ablösezeiten, Anregebild, Fehlermeldungen, LED’s, Fallklappen usw.) mitzuteilen. Dazu sind mindestens die letzten fünf Störgereignisse mit Datum und Uhrzeit im Schutzgerät zu speichern und auf Anforderung auszulesen;
Zur Ausführung der Kurzschlusschutzeinrichtungen werden folgende Vorgaben gemacht:

Unabhängiger Maximalstromzeitschutz (UMZ-Schutz)

Der UMZ-Schutz muss folgende Grundfunktionen besitzen:

- Schutzgerät wandlerstromversorgt mit Wandlerstromauslösung, Kondensatorauslösung oder versorgt über eine gesicherte Gleichspannungsquelle;
- Strommeseingang 4-polig, für Leiterstromanregung zweistufig getrennt einstellbare Zeit- und Stromstufen;
- unabhängiger Erdstromzeitschutz, einstufig, unabhängig einstellbare Zeit- und Stromstufe, einstellbar auf Auslösung oder Meldung;
- alle Schutzeinstellungen müssen sich in einem nichtflüchtigen Speicher befinden;
- Schutzauslösungen sind auch bei Ausfall der Netzspannung bis zur manuellen Quittierung sichtbar anzuzeigen;
- Bei nicht vorhandener direkter Quittierungsfunktion am Schutzgerät (z.B. wenn die Quittierung nur über einen Menübaum möglich ist) ist ein externer Quittiertaster im Bedienbereich des Schutzgerätes vorzusehen.
- Es ist eine interne Selbstüberwachungsfunktion erforderlich (Life-Kontakt)

Einstellbereiche/Zeiten/Toleranzen

<table>
<thead>
<tr>
<th>Nennstrom</th>
<th>[I_n = 1 \text{ A}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überstromanregung</td>
<td>[I_{>} = 0,50 \ldots 2,5 \times I_n \text{, Einstellauflösung mind. } 0,1 \times I_n]</td>
</tr>
<tr>
<td>Hochstromanregung</td>
<td>[I_{>>} = 2,00 \ldots 20 \times I_n \text{, Einstellauflösung mind. } 0,1 \times I_n]</td>
</tr>
<tr>
<td>Verzögerungszeit</td>
<td>[t_{>} = 0,10 \ldots 3 \text{ s, Einstellauflösung } \leq 100 \text{ ms}]</td>
</tr>
<tr>
<td>Verzögerungszeit</td>
<td>[t_{>>} = 0,06 \ldots 2 \text{ s und } \infty \text{, Einstellauflösung } \leq 50 \text{ ms}]</td>
</tr>
<tr>
<td>Überstromanregung</td>
<td>[I_{0>} = 0,50 \ldots 2,5 \times I_n \text{, Einstellauflösung mind. } 0,1 \times I_n]</td>
</tr>
<tr>
<td>Verzögerungszeit</td>
<td>[t_{0>} = 0,10 \ldots 3 \text{ s und } \infty \text{, Einstellauflösung } \leq 100 \text{ ms}]</td>
</tr>
<tr>
<td>Ansprechzeiten</td>
<td>\leq 50 \text{ ms}</td>
</tr>
<tr>
<td>Rückfallzeiten</td>
<td>\leq 50 \text{ ms}</td>
</tr>
<tr>
<td>Rückfallverhältnis</td>
<td>\geq 0,90</td>
</tr>
<tr>
<td>Toleranzen</td>
<td>Stromanregung 5 % vom Einstellwert, Verzögerungszeiten 5 % bzw. 30 ms</td>
</tr>
</tbody>
</table>

kommandofähige Schaltkontakte für Auslösung Leistungsschalter

Bedienelemente und ggf. die PC-Schnittstelle müssen frontseitig erreichbar sein.

Erdschlussrichtungserfassung

Die Erdschlussrichtungserfassung nach dem Erdschlusswischerverfahren oder dem wattmetrischen Verfahren kann im UMZ-Schutz oder durch ein separates Gerät realisiert werden. Ein separates Gerät kann über Wandlerstrom/-spannung oder über eine separate Gleichspannungsquelle versorgt werden. Im Falle des wattmetrischen Verfahrens sind in dem betroffenen Feld Kabelumbauwandler zu installieren. Folgende Anschlussbedingungen und Einstellungen müssen realisiert werden können:

| Nennspannung | \[U_n = 100/110 \text{ V AC, } 50 \text{ Hz} \] |
Die Meldung „Erdschluss-Kundennetz“ muss auch bei Ausfall der Netzspannung erhalten bleiben. Es ist eine automatische Rückstellung mit einstellbarer Zeit (i.d.R. 2 Stunden) vorzusehen.

Gibt Westnetz für die Erdschlussrichtungserfassung die Funktion „Auslösung“ vor, so muss diese auf den zugeordneten Leistungsschalter bzw. Lasttrennschalter wirken.

Zu 6.3.4.3.2 HH-Sicherung
 - Keine Ergänzung -

Zu 6.3.4.3.3 Abgangsschaltfelder
Falls das Übergabeschaltfeld ohne Schutzeinrichtung und infolge dessen die Abgangsschaltfelder mit Leistungsschaltern und Schutzrelais ausgestattet sind, gelten die nachstehenden Grundsätze aus Kapitel 6.3.4.3.1 analog für die Ausführung der Schutzeinrichtungen in allen betroffenen Abgangsfeldern.

Zu 6.3.4.3.4 Platzbedarf

Zu 6.3.4.4 Automatische Frequenzentlastung
 - keine Ergänzung -

Zu 6.3.4.5 Schnittstellen für Schutzfunktions-Prüfungen
Zur Durchführung von Schutzfunktionsprüfungen sind in die Verdrahtung zwischen Wandler, Leistungsschalter und Schutzgerät Einrichtungen zur Anbindung von Prüfgeräten einzubauen. Als Schnittstelle ist eine Prüfklemmenleiste vorzusehen. Diese Einrichtungen haben folgende Funktionen zu erfüllen:
 - Heraustrennen der Wandlerkreise zum Schutzgerät,
 - Kurzschließen von Stromwandlern,
 - Auftrennen des AUS- und EIN-Befehls zwischen Schutzgerät und Leistungsschalter,
 - Anbindung der Prüfeinrichtung (Wandlerkreise, Befehle, Generalanregung).

Die technische Ausführung dieser Einrichtungen ist in Anhang G beschrieben.

Zu 6.3.4.6 Mitnahmeschaltung bei der Parallelschaltung von Transformatoren
 - keine Ergänzung -

Zu 6.3.4.7 Schutzprüfung
Die Funktionalität der Schutzsysteme inklusive Auslösekontrollen sind vor deren Inbetriebsetzung am Einsatzort zu prüfen. Relaisschutzprüfungen in Form von Werksvorprüfungen werden nicht akzeptiert.
Für alle Schutzeinrichtungen sind weiterhin
- nach jeder Änderung von Einstellwerten,
- zyklisch (mindestens alle 4 Jahre)
Schutzprüfungen durchzuführen.

Nachweispflichtige Prüfungen zur Inbetriebsetzung der Wandler und des Schutzes

Die Strom- und Spannungswandlerkreise sind auf Isolation, Phasenzuordnung, sekundäre Erdung und Bürde zu prüfen.

Bei umschaltbaren Stromwandlern ist die finale Übersetzung zu prüfen und zu dokumentieren. Die Stromwandlererddung wird an der ersten sekundären Klemmstelle, vorzugsweise am Klemmbrett der Stromwandler, gefordert. **Die sekundäre Stromwandlererddung am Schutzgerät wird nicht zugelassen.**

Die Bürdenmessung ist mit der Primärprüfung bei Wandlernennstrom durchzuführen.

Die korrekte Schaltung und Erdung der Messwicklungen (2a-2n; da-dn) ist durch eine Primärprüfung mit Wechsel- oder Drehstrom nachzuweisen.

Durch Sekundär- und Primärprüfungen sind die Wirksamkeiten der Schutzsysteme UMZ-Schutz, Erdschlusssschutz, Q/U-Schutz und übergeordneter Entkoppelungsschutz nachzuweisen.

Es ist eine Richtungsprüfung durchzuführen und die Melde- und Auslösefunktion bei Erdkurzschluss Vorwärtsrichtung (vorwärts = in Richtung Kundennetz) nachzuweisen.

Die Schalterauslösung bei Hilfsspannungs- und/oder Schutzrelaisausfall sowie die Mitnahme- und Freigabefunktion über das Steuerkabel zur Westnetz-eigenen Umspannanlage (siehe Anhang L) ist zu überprüfen und zu dokumentieren, sofern vorhanden.

Die Netzschaltung der Kundenstation erfolgt nur bei Vorlage und Freigabe folgender Prüfnachweise (sofern vorhanden):
- Prüfprotokoll übergeordneter Entkoppelungsschutz;
- Prüfprotokoll Distanzschutz/UMZ-Schutz;
- Prüfprotokoll Erdschlussrichtungserfassung;
- Prüfprotokoll Q/U-Schutz;
- Prüfprotokoll Strom-Spannungswandler;
- Prüfprotokoll der USV und Schalterauslösung bei Hilfsspannungs- und/oder Schutzrelaisausfall.

Nach Inbetriebsetzung der Übergabestation sind, sofern vorhanden, die Mitnahme- und Freigabefunktion über das Steuerkabel zum Westnetz-eigenen Umspannwerk zu überprüfen und dokumentieren (weitere Details siehe Anhang K).

Zu 6.4 Störschreiber

Westnetz installiert und betreibt eine nachrichtentechnische Verbindung zum Störschreiber. Dazu stellt der Anschlussnehmer Westnetz unentgeltlich Raum zur Verfügung. Falls Westnetz auf eine nachrichtentechnische Verbindung zum Störschreiber verzichtet oder diese nicht zur Verfügung steht, ist der Anschlussnehmer verpflichtet
technische Anschlussbedingungen mittelspannung Westnetz (Stand 01.04.2019) – Ergänzungen zur VDE-AR-N 4110 „TAR Mittelspannung“

den Störschreiber auf Anforderung der Westnetz auszulesen und die Daten innerhalb von 3 Werktagen Westnetz im Comtrade-Format zur Verfügung zu stellen.

Die Messung der für den Störschreiber erforderlichen Spannungen und Ströme in der Übergabestation hat grundsätzlich auf der Mittelspannungsseite zu erfolgen.

Im Fall von Erzeugungsanlagen die nach dem Einzelnachweisverfahren zertifiziert werden sollen ist ergänzend zum Störschreiber in der Übergabestation ein weiterer Störschreiber an der Erzeugungseinheit gemäß Kapitel 11.6.1 erforderlich.

In Abhängigkeit der Genauigkeitsanforderungen des Störschreibers können höhere Anforderungen an die Strom- und Spannungswandler erforderlich werden. Die Auswahl der Wandler ist daher frühzeitig mit Westnetz abzustimmen.

Zu 7 Abrechnungsmessung

Zu 7.1 Allgemeines

Ergänzend zu der VDE-AR-N 4110 und den in dieser TAB formulierten Anforderungen gelten die auf der Internetseite der Westnetz aufgeführten Bedingungen an den Messstellenbetrieb (siehe dort die „Technischen Mindestanforderungen an den Messstellenbetrieb“).

Zu 7.2 Zählerplatz

Zu 7.3 Netz-Steuerschrank

- Keine Ergänzung -

Zu 7.4 Messeinrichtungen

Ist bei Erzeugungsanlagen eine einheitenscharfe Abrechnung erforderlich, hat der Anlagenbetreiber (der Erzeuger) dafür Sorge zu tragen, dass eine geeichte Messeinrichtung (bei neuem Zähler: Konformitätserklärung des Herstellers) für jede Erzeugungseinheit durch einen Messstellenbetreiber gemäß Messstellenbetriebsgesetz installiert wird.

Der Messstellenbetreiber stellt grundsätzlich den Zähler und die abrechnungsrelevanten Zusatzeinrichtungen zur Verfügung und verantwortet deren Montage, Betrieb und Wartung.

Erfolgt der Messstellenbetrieb durch Westnetz in der Rolle als grundzuständiger Messstellenbetreiber, so stellt Westnetz dem Anschlussnutzer für die Datenregistrierung und Datenübertragung auf Wunsch, sofern technisch möglich, Steuerimpulse aus der Abrechnungsmesseinrichtung ohne Gewährleistung zur Verfügung. Die Kosten hierfür trägt der Anschlussnutzer.

Wird aus einer Mittelspannungs-Übergabestation ein weiterer Anschlussnutzer (Unterabnehmer) versorgt, so sind die hierfür verwendeten Messeinrichtungen nach dem gleichen Standard und damit ebenfalls als Lastgangmessung oder als intelligentes Messsystem aufzubauen. Dies gilt auch für die für den Eigenbedarf bezogene Wirk- und Blindarbeit.

In Abstimmung mit dem Netzbetreiber ist im Falle mehrerer Anschlussnutzer, die über einen Mittelspannungs-Kundentransformator versorgt werden, der Aufbau paralleler SLP- und RLM-Messeinrichtungen entsprechend der Messaufgabe möglich. In diesem Fall entfällt die mittelspannungsseitige Abrechnungsmessung.

Zu 7.5 Messwandler

Die Spannungswandler sind vom Netz der Westnetz aus gesehen hinter den Stromwandlern anzuschließen.

Die Wandler müssen mindestens folgenden Bedingungen genügen:

Allgemein:
Technische Anschlussbedingungen Mittelspannung Westnetz (Stand 01.04.2019) – Seite 24/84

Ergänzungen zur VDE-AR-N 4110 „TAR Mittelspannung“

- MID-Konformitätserklärung- ist Westnetz zu übergeben (durch den Messstellenbetreiber)
- thermischer Kurzschlusstrom, Bemessungsstoßstrom und Isolationsspannung entsprechend Kapitel 6.2.1;
- Messkerne und Messwicklungen zum Anschluss von EZA-Reglern für die Blindleistungsregelung/statische Spannungshaltung müssen mindestens der Klasse 0,5 genügen, bei Anschlusscheinleistungen der Kundenanlage SA > 1 MVA mindestens der Klasse 0,2 genügen;

Spannungswandler:
- Standard-Anforderung an die Zähllwicklung der Spannungswandler: Klasse 0,5; 15 VA; mit Zustimmung der Westnetz darf abgewichen werden;
- Spannungswandler sind als drei einpolig isolierte Spannungswandler auszuführen;
- Die sekundäre Bemessungssteilspannung der Zähl- und Schutzwicklung der Spannungswandler beträgt \(\frac{100}{\sqrt{3}} \);
- Bemessungsstapppunktktor der Spannungswandler: 1,9 x Un/8 h (6 A);
- Schutzwicklungen der Spannungswandler für den übergeordneten Entkupplungsschutz müssen der Klassengenauigkeit 3P genügen, typischerweise kombiniert aus Klasse 0,5 und 3P. Bis zum 30.06.2020 genügt für Schutzzwecke die Einhaltung der Genauigkeitsklasse 0,5.

Stromwandler:
- Standard-Anforderung an die Zählerkerne der Stromwandler: Klasse 0,5s; 10 VA, FS 5; mit Zustimmung der Westnetz darf abgewichen werden;
- Der Primärstrom der Stromwandlerkerne für die Zählung ist den vertraglichen Leistungsanforderungen anzupassen;
- Der sekundäre Bemessungsstrom der Stromwandler muss bei den Zählerkernen bei ≤ 20 kV 5 A, bei den Zählerkernen bei 30 kV 1 A und bei den Schutzkernen 1 A betragen;
- thermischer Bemessungs-Dauerstrom der Stromwandler: 1,2 x Ip;
- Schutzkerne der Stromwandler zum Anschluss von Kurzschlussschutzeinrichtungen müssen Kurzschlussströme von 6 kA im 10-kV-Netz und 3 kA im 20-kV-Netz entsprechend der Genauigkeitsklasse 10P sowie 16 kA im 30-kV-Netz entsprechend der Genauigkeitsklasse 5P oder besser gemäß DIN EN 60044-1 übertragen;

Anmerkungen: Der erforderliche Bemessungs-Genauigkeitsgrenzfaktor nach DIN EN 60044-1 ist wie folgt zu ermitteln:

\[
\text{Bemessungs-Genauigkeitsgrenzfaktor} = \frac{\text{gefordeter primärer Kurzschlusstrom (16 kA, 6 kA oder 3 kA, siehe oben)}}{\text{primärer Nennstrom des Schutzkerns}}
\]

2. Westnetz behält sich vor, aufgrund besonderer Netzkonstellationen auch höhere Anforderungen an das Übertragungsverhalten der Schutzkerne zu stellen.

3. Wird die oben genannte pauschale Auslegungsvorschrift der Stromwandlerparameter nicht eingehalten, muss vom Anlagenhersteller mittels rechnerischem Nachweis auf Basis der tatsächlichen Bebruchsverhältnisse gezeigt werden, dass die Übertragung des Kurzschlussstromes den oben genannten Anforderungen trotzdem genügt.

- Die erforderliche Nennleistung der Schutzkerne der Stromwandler für den Übergabeschutz einschließlich der Bemessung der Auslösespule des Leistungsschalters ist in Abhängigkeit der angeschlossenen Sekundärtechnik im Rahmen der Projektierung durch den Kunden zu ermitteln und festzulegen. Die zugehörigen Berechnungsunterlagen müssen Bestandteil der bei Westnetz einzureichenden Projektkundendokumentation sein;
- Werden zusätzlich Messgeräte an den Schutzern der Stromwandler angeschlossen, ist die Kurzschlussfestigkeit der zum Einsatz kommenden Messgeräte sicherzustellen und nachzuweisen;
Technische Anschlussbedingungen Mittelspannung Westnetz (Stand 01.04.2019) – Seite 25/84
Ergänzungen zur VDE-AR-N 4110 „TAR Mittelspannung“

- Schutz- oder Messkerne der Stromwandler zum Anschluss von Q> & U< -Schutz -einrichtungen müssen entsprechend der Genauigkeitsklasse 5P oder besser gemäß DIN EN 61869-2 (VDE 0414-9-2) übertragen und mindestens folgendem Verhältnis genügen: In EZA/In Wandler ≥ 0,33;
- Schutz- oder Messkerne der Stromwandler zum Anschluss von Schutzeinrichtungen müssen der thermischen Kurzschlussfestigkeit der Schutzrelais am Strommeseingang genügen. Es gilt im 10-kV-Netz: \[
\frac{\text{Übersetzungsverhältnis der Stromwandler}}{16 \text{kA}} \leq I_{th} (\text{Schutz,5P}), \]
 sowie im 20- und 30-kV-Netz:
 \[
 \frac{\text{Übersetzungsverhältnis der Stromwandler}}{16 \text{kA}} \leq I_{th} (\text{Schutz,5P}).
 \]
 Ansonsten muss die Berechnungsgrundlage ein Bestandteil der einzureichenden Projektdokumentation sein.
- Messkerne und Messwicklungen zum Anschluss von EZA-Reglern für die Blindleistungsregelung/statische Spannungshaltung müssen mindestens der Klasse 0,5, bei Anschlussscheinleistungen der Kundenanlage SA > 1 MVA mindestens der Klasse 0,2, genügen.

Falls der Anschlussnehmer andere als die unten genannten Wandler einsetzt (z.B. für gasisolierte Anlagen), so hat er im Störungsfall für die Ersatzbeschaffung selbst Sorge zu tragen.

Weitere Details sind dem Anhang H "Wandlerverdrahtung" zu entnehmen.

Beistellung der Wandler durch Westnetz

Ist Westnetz der Messstellenbetreiber, so kommen bei 10-kV- und 20-kV-Netzanschlüssen nicht kippschwingungsarme Wandler in schmaler Bauform nach DIN 42600 Teil 8 und Teil 9 und bei 30-kV-Netzanschlüssen nicht kippschwingungsarme Wandler in großer Bauform nach DIN 42600 Teil 3 und Teil 5 mit folgenden Kenndaten zum Einsatz:

3 einpolige **Spannungswandler** (3 Wicklungen)

<table>
<thead>
<tr>
<th>Wicklung</th>
<th>Funktion</th>
<th>Klasse</th>
<th>VA</th>
<th>MID-Konformität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wicklung 1</td>
<td>Zählung</td>
<td>Klasse 0,5; 15 VA</td>
<td>MID-Konformität</td>
<td></td>
</tr>
<tr>
<td>Wicklung 2</td>
<td>Schutz</td>
<td>Klasse 0,2/3P; min.15 VA</td>
<td>(bis 30.06.2020 ggf. Klasse 0,2 oder 0,5 - ohne 3P)</td>
<td></td>
</tr>
<tr>
<td>Wicklung 3</td>
<td>Erdschlussmessung, Bedämpfung (da-dn)</td>
<td>Klasse 3P; 100 VA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Wicklung 2 kommt zum Einsatz, wenn Schutz- und/oder Betriebsmessaufgaben zu erfüllen sind (z.B. bei allen Erzeugungsanlagen). Die Wicklung 3 kann zur Bedämpfung von Kippschwingungen oder auch zur Erdschluss(richtungs)erfassung genutzt werden.

Bei Entfall der Wicklungen 2 und 3 kann Westnetz an Stelle von drei einpoligen Spannungswandrern zwei zweipolige Wandler einsetzen.

3 **Stromwandler** (3 Kerne)

<table>
<thead>
<tr>
<th>Stromwandler bei Beistellung durch Westnetz</th>
<th>Kern 1</th>
<th>Kern 2</th>
<th>Kern 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zählung</td>
<td>Klasse 0,5S; 10 VA; 5 A; FS 5; MID-Konformität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messwerte</td>
<td>Klasse 0,2; 5 VA; 1 A; FS 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schutz</td>
<td>Klasse 5Px; 5 VA; 1 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

der Stromwandler ist in begründeten Ausnahmefällen möglich, die Auslegung muss aber den oben genannten grundlegenden Anforderungen an die Stromwandler entsprechen.

Zu 7.6 Datenfernübertragung

Zählerfernauslesung

Bei Bedarf stellt der Anschlussnehmer eine Spannungsversorgung (230 V Wechselspannung) zur Verfügung.

Erfolgt der Messstellenbetrieb für RLM-Zähler durch Westnetz, so stellt er dem Anschlussnutzer Energiemengen- und Synchronisierimpulse gegen Entgelt und sofern technisch möglich ohne Gewährleistung zur Verfügung.

Zu 7.7 Spannungsebene der AbrechnungsMESSUNG

Im Falle eines einzelnen Anschlussnutzers erfolgt die Messung der von der an das Mittelspannungsnetz angeschlossenen Kundenanlage bezogenen bzw. eingespeisten elektrischen Energie grundsätzlich auf der Mittelspannungsseite. In Abstimmung mit Westnetz ist auch eine Messung auf der Niederspannungsseite bis max. 630 kVA je Messung möglich. In diesen Fällen hat der Anschlussnutzer die durch die Umspannung entstehenden Verluste zu tragen.

Angaben zur Auslegung der Stromwandler bei Messung auf der Niederspannungsseite sind der TAB Niederspannung der Westnetz zu entnehmen.

Zu 8 Betrieb der Kundenanlage

Zu 8.1 Allgemeines

- keine Ergänzung -

Zu 8.2 Netzführung

Die Gesamtverantwortung für die Netzführung des Netzanschlusses aller Kundenanlagen obliegt der Westnetz. Bei allen Anschlüssen an 30-kV-Netze sowie bei 10/20-kV-Netznachlässen mit separatem Schaltfeld (singulär genutztes Schaltfeld) in einer Westnetz-eigenen 110/30/10 (20)-kV-, 110/10 (20)-kV- oder einer 30/10 (20)-kV-Station sind zwischen dem Anschlussnutzer und Westnetz Details zum technischen Betrieb der Kundenanlage in dem Netzanschlussvertrag sowie in der Netzführungsvereinbarung zu vereinbaren.

Bei kurzen, geplanten Unterbrechungen ist Westnetz zur Unterrichtung nur gegenüber den Anschlussnutzern verpflichtet, die zur Vermeidung von Schäden auf eine unterbrechungsfreie Versorgung angewiesen sind und dies Westnetz unter Angabe von Gründen schriftlich mitgeteilt haben. Die Pflicht zur Benachrichtigung entfällt, wenn die Unterrichtung
- nach den Umständen nicht rechtzeitig möglich ist und Westnetz dies nicht zu vertreten hat oder
- die Beseitigung von bereits eingetretenen Unterbrechungen verzögern würde.

Zu 8.3 Arbeiten in der Übergabestation

Vor Aufnahme von geplanten oder ungeplanten Arbeiten, die Meldungen zum Partner zur Folge haben könnten, ist die netzführende Stelle des Partners zu verständigen. Für Arbeiten an oder in der Nähe von Westnetz-eigenen Betriebsmitteln ist bei der netzführenden Stelle der Westnetz
- eine „Verfügungserlaubnis“ (VE) bzw.
- eine „Freigabe zur weiteren Verwendung“ (FWV) bzw.
- eine „Prüferlaubnis“ (PE) bzw.
- eine „Freischaltgenehmigung“ (FG)

Zu 8.4 Zugang
- keine Ergänzung.

Zu 8.5 Bedienung vor Ort

Verfügungsbereichsgrenze

Die Verfügungsbereichsgrenze legt die Zuständigkeit für die Anordnung von Schalthandlungen fest (Hiermit ist nicht die Verfügungserlaubnis gemeint, die von der netzführenden Stelle z.B. für Arbeiten in einem bestimmten Bereich erteilt wird). Sie verläuft (aus Netzsicht) hinter dem/den Einspeisefeld(ern). Die Verfügungsbereichsgrenzen sind in Anhang D dargestellt. Es gelten folgende Festlegungen:
- In dem/den netzseitigen Eingangsschaltfeld(ern) werden Schaltbefehle nur durch Westnetz angeordnet und Schaltgeräte bedient.
- Im/in den Übergabee-/Trafoschaltfeld(ern) der Kundenanlage werden durch den Anlagenbetreiber Schaltbefehle angeordnet und Schaltgeräte bedient.
- Diese Grundsätze gelten auch, wenn kein Lasttrennschalter im netzseitigen Eingangsschaltfeld vorhanden ist.
- Schaltgeräte, die Veränderungen auf den Schaltzustand im Netz der Westnetz bewirken, befinden sich im Verfügungsbereich der Westnetz.
- Der Anlagenbetreiber ist verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.
- Diese Grundsätze gelten gleichermaßen für Übergabestationen mit und ohne Erzeugungsanlagen.

Zu 8.6 – 8.10
- keine Ergänzung.

Zu 8.11 Besondere Anforderungen an den Betrieb von Ladeeinrichtungen für Elektrofahrzeuge

Zu 8.11.1 Allgemeines
- keine Ergänzung.
Zu 8.11.2 Blindleistung
Für den Betriebsmodus „Energiebezug“ (Ladevorgang) gelten folgende Vorgaben:

AC-Laden: Gemäß VDE-AR-N 4110 ist im Leistungsbereich zwischen 5 % \(P_n \leq P < 100 \% P_n \) ein \(\cos \varphi = 0,90 \) untererregt bis 1 und bei \(P_n \) ein \(\cos \varphi \) von \(\geq 0,95 \) untererregt einzuhalten.

DC- und induktive Ladeeinrichtungen > 12 kVA:
Bei Inbetriebsetzung vor dem 01.01.2021 muss das Blindleistungsverhalten dem Kapitel 5.5 entsprechen (\(\cos \varphi \) von \(\geq 0,95 \) untererregt) oder es wird bereits die nachstehende Blindleistungsfahrweise eingestellt.

Bei Inbetriebsetzung ab dem 01.01.2021 ist die \(Q(P) \)-Kennlinie übererregt (wenn keine fernwirktechnische Anbindung an die netzführende Stelle der Westnetz vorgesehen ist) bzw. \(Q(U) \)-Kennlinie (wenn eine fernwirktechnische Anbindung an die netzführende Stelle der Westnetz vorgesehen ist) aus Kapitel 10.2.2.4 in dem Bereich zwischen \(\cos \varphi = 0,95 \) untererregt bis \(\cos \varphi = 0,95 \) übererregt einzustellen.

Zu 8.11.3 Wirkleistungsbegrenzung
Ladeeinrichtungen für Elektrofahrzeuge mit einer Summenleistung \(\leq 12 \) kVA benötigen grundsätzlich keine technische Einrichtung zur Wirkleistungs begrenzung durch Westnetz.

Im Falle von Ladeeinrichtungen für Elektrofahrzeuge mit einer Summenleistung > 12 kVA und \(\leq 475 \) kW (500 kVA) kann zunächst auf den Einbau der technischen Einrichtung verzichtet werden. Diese kann jederzeit durch Westnetz nachgefordert werden und ist innerhalb einer angemessenen Umsetzungsfrist einzubauen und kommunikativ mit Westnetz zu verbinden. Zu diesem Zweck wird daher empfohlen eine Datenverbindung zwischen der technischen Einrichtung am zentralen Zählerplatz in der Übergabestation und der Ladeeinrichtung vorzubereiten (z.B. mittels Leerrohr).

Im Falle von Ladeeinrichtungen für Elektrofahrzeuge mit einer Summenleistung > 475 kW (500 kVA) installiert der Anlagenbetreiber auf seine Kosten eine technische Einrichtung über die Westnetz eine Begrenzung des Wirkleistungsbezugs der Ladeeinrichtung vorgenommen kann. Eine detaillierte Spezifikation der fernwirktechnischen Anbindung ist auf der Internetseite der Westnetz verfügbar. Die Kosten der Datenübertragung übernimmt Westnetz.

Westnetz greift bei Maßnahmen mit Wirkleistungsbegrenzung nicht in die Steuerung der Ladeeinrichtungen ein, sondern stellt lediglich die entsprechenden Signale auf der jeweils vorhandenen Schnittstelle gemäß technischer Ausführung zur Verfügung.

Zu 8.11.4 Wirkleistungsabgabe bei Über- und Unterfrequenz
Zu 8.12 – 8.13
- keine Ergänzung -

Zu 9 Änderungen, Außerbetriebnahmen und Demontage
Falls sich durch eine Erhöhung der Netzkurzschlussleistung oder durch eine Änderung der Netzspannung gravierende Auswirkungen auf die Kundenanlage ergeben, teilt Westnetz dies dem Anschlussnehmer rechtzeitig mit. Der Anschlussnehmer trägt die Kosten der dadurch an seinem Netzanschluss entstehenden Folgenmaßnahmen.

Dies betrifft auch Anpassungen an das Schutzkonzept in Form von Einstellungs- oder Hardwareänderungen nach Inbetriebnahme. Diese sind durch den Anschlussnehmer umzusetzen.

Zu 10 Erzeugungsanlagen
Zu 10.1 Allgemeines
- keine Ergänzung -
Zu 10.2 Verhalten der Erzeugungsanlage am Netz
Zu 10.2.1 Allgemeines

Zu 10.2.1.1 bis 10.2.1.3
- keine Ergänzung -
Zu 10.2.1.4 Inselbetrieb sowie Teilnetzbetriebsfähigkeit
Über einen vom Anschlussnehmer vorgesehenen Inselbetrieb ist Westnetz auf dem Datenblatt Erzeugungsanlage E.8 zu informieren.

Zu den Themen Inselnetzerkennung und Synchronisierung/Zuschaltung an das öffentliche Netz siehe auch Kapitel 10.4.

Zu 10.2.1.5 **Schwarzstartfähigkeit**
- keine Ergänzung -

Zu 10.2.2 **Statische Spannungshaltung/Blindleistungsbereitstellung**

Zu 10.2.2.1 **Allgemeine Randbedingungen**

Bei Erzeugungsanlagen, die so ausgelegt sind, dass sie über die nachfolgend aufgeführten Grenzwerte von \(Q/P_{b,\text{inst}} \) = 0,33 (\(\cos \varphi = 0,95 \)) hinaus betrieben werden können, holt Westnetz für den erweiterten Betrieb die Zustimmung des Anlagenbetreibers ein. Die hierfür erforderlichen technischen und vertraglichen Rahmenbedingungen sind zwischen Anlagenbetreiber und Westnetz zu vereinbaren.

Zu 10.2.2.2 – 10.2.2.3
- keine Ergänzung -

Zu 10.2.2.4 **Verfahren zur Blindleistungsbereitstellung**

Im Standardfall kommt das Verfahren „a) Blindleistungs-Spannungskennlinie (Q(U))“ mit fernwirktchnischer Umschaltmöglichkeit auf das Verfahren „c) Blindleistung mit Spannungsbegrenzungsfunktion“ zum Einsatz.

Bei Ausfall der Fernwirkverbindung oder der Regelung innerhalb der Erzeugungsanlage ist mit der zuletzt gültigen Vorgabe der Betrieb fortzuführen. Eine detaillierte Spezifikation der fernwirktechnischen Anbindung ist auf der Internetseite der Westnetz verfügbar.

Im Fall von Erzeugungsanlagen bei denen eine fernwirktechnische Anbindung an die netzführende Stelle der Westnetz nicht vorgesehen ist, ist das Verfahren „b) Kennlinie Blindleistung als Funktion der Leistung Q(P)” an der Erzeugungsanlage einzustellen. In welchen Fällen auf eine fernwirktchnische Anbindung verzichtet werden kann, ist Kapitel 10.2.4.2 zu entnehmen.

Bei Erzeugungsanlagen, die so ausgelegt sind, dass sie über die oben aufgeführten Grenzwerte für die Blindleistungsbereitstellung hinaus betrieben werden können, holt Westnetz für den erweiterten Betrieb die Zustimmung des Anlagenbetreibers ein. Die hierfür erforderlichen technischen und vertraglichen Rahmenbedingungen sind zwischen Anlagenbetreiber und Westnetz zu vereinbaren.
Zu a) Blindleistungs-Spannungskennlinie $Q(U)$

Zu Spannungstotband

Es ist ein Spannungstotband von ±0,0 % U_c einzustellen.

Zu Definition der Kennlinie

Steigung der Kennlinie:

- Obere Spannungsgrenze: $U_{MAX}/U_c = 1,04$
- Untere Spannungsgrenze: $U_{MIN}/U_c = 0,96$
- Maximale Blindleistung: $Q_{MAX-untererregt}/P_{inst} = 0,33$
- Referenzspannung: $U_{QD,ref}/U_c = 1,00$

Die Vorgabespannung U_{QD}/U_c gibt Westnetz über die Fernwirkverbindung vor. Bei Ausfall der Fernwirkverbindung ist mit dem zuletzt gültigen Wert für die Vorgabespannung U_{QD}/U_c der Betrieb fortzufahren.
Zu b) Kennlinie Blindleistung als Funktion der Leistung \(Q(P) \)

Wenn nach Vorgabe der Westnetz bzw. den vorgenannten Kriterien das Verfahren „b) Kennlinie Blindleistung als Funktion der Leistung \(Q(P) \)“ zum Einsatz kommen soll, so ist dieses im Standardfall wie folgt umzusetzen. Abweichende Anforderungen gibt Westnetz im Einzelfall über den Netzbetreiberabfragebogen (Anhang E.9) vor.

Grundsätzlich gelten folgende Wertepaare:

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P/P_{b\text{ inst}}) [%]</td>
<td>0,1</td>
<td>-0,5</td>
<td>-0,6</td>
<td>-0,9</td>
<td>-1,00</td>
</tr>
<tr>
<td>(Q/P_{b\text{ inst}}) [%]</td>
<td>0,0</td>
<td>0,0</td>
<td>0,05</td>
<td>0,33</td>
<td>0,33</td>
</tr>
</tbody>
</table>

Diese Werte gelten nicht für den Sammelschienendirektanschluss.

Zu c) Blindleistung mit Spannungsbegrenzungsfunktion

Folgende Kennlinie ist grundsätzlich umzusetzen:

\[
P_1 \left(\frac{U_{P1}}{U_c} ; \frac{Q_{P1}}{P_{b\text{ inst}}} \right) = 0,94; -0,33
\]

\[
P_2 \left(\frac{U_{P2}}{U_c} ; \frac{Q_{ref}}{P_{b\text{ inst}}} \right) = 0,96; 0,00
\]

\[
P_3 \left(\frac{U_{P3}}{U_c} ; \frac{Q_{ref}}{P_{b\text{ inst}}} \right) = 1,04; 0,00
\]

\[
P_4 \left(\frac{U_{P4}}{U_c} ; \frac{Q_{P4}}{P_{b\text{ inst}}} \right) = 1,06; +0,33
\]

\[
\text{Steigung des Kennlinienabschnittes } m_A = \frac{Q_{ref}/P_{b\text{ inst}} - Q_{cell}/P_{b\text{ inst}}}{U_{P1}/U_c - U_{P2}/U_c} = \frac{-0,33 - 0,00}{0,94 - 0,96} = 16,5
\]

\[
\text{Steigung des Kennlinienabschnittes } m_B = \frac{Q_{cell}/P_{b\text{ inst}} - Q_{ref}/P_{b\text{ inst}}}{U_{P3}/U_c - U_{P4}/U_c} = \frac{0,00 - 0,33}{1,04 - 1,06} = 16,5
\]

Den Wert für die Referenzblindleistung \(Q_{ref}/P_{b\text{ inst}} \) gibt Westnetz über die Fernwirkverbindung vor. Bei Ausfall der Fernwirkverbindung ist mit dem zuletzt gültigen Wert für die Referenzblindleistung \(Q_{ref}/P_{b\text{ inst}} \) der Betrieb fortzufahren.

Zu d) Verschiebungsfaktor \(\cos \phi \) - keine Ergänzung.

Zu 10.2.2.5 Besonderheiten bei der Erweiterung von Erzeugungsanlagen - keine Ergänzung.

Zu 10.2.2.6 Besonderheiten bei Mischanlagen mit Bezugsanlagen

Grundsätzlich müssen auch Erzeugungsanlagen innerhalb von Mischanlagen die statische Spannungshaltung nach Kapitel 10.2.2 umsetzen. Bei im Verhältnis zur Bezugsleistung sehr kleinen Erzeugungsanlagen, die innerhalb der Kundenanlage (nicht unmittelbar am NAP) angeschlossen werden sollen, ist in Abstimmung mit dem Netzbetreiber ein Betrieb der Erzeugungsanlagen mit einem Verschiebungsfaktor von \(\cos \phi = 1 \) möglich.
Hierbei sind mögliche Wechselwirkungen zwischen der Erzeugungsanlage und einer vorhandenen Blindstromkompensationsanlage für die Bezugsanlage zu berücksichtigen (siehe hierzu auch Anhang D.5e).

Findet eine Blindarbeitsverrechnung statt, die durch die Erzeugungsanlage beeinflusst wird, ist hierzu eine Abstimmung zwischen Westnetz und Anlagenbetreiber erforderlich. Grundsätzlich ist der Einsatz eines Blindarbeitszählers (z. B. Lastgangzähler) für die Erzeugungsanlage und für die Verrechnung mit der Gesamt-Übergabestelle für die Kundenanlage empfehenswert.

Zu 10.2.3 Dynamische Netzstätzung
Die Art der Dynamischen Netzstätzung („vollständige dynamische Netzstätzung“ oder „eingeschränkte dynamische Netzstätzung“) hängt von der Lage des Netzanschlussanschlusspunktes ab. Es wird unterschieden zwischen einem

Anschluss im 10/20-kV-Netz

Erzeugungsanlagen vom Typ 1 mit Anschluss im 10/20-kV-Netz liefern während des Netzfehlers ihren maschinenbedingten Kurzschlussstrom, der Verstärkungsfaktor k ist nicht einstellbar.

Anschluss an die 10/20-kV-Sammelschiene

und Anschluss an 30-kV-Netze
Sowohl bei Anschluss an die 30-kV-Sammelschiene der Westnetz als auch bei Anschluss im 30-kV-Netz müssen die Erzeugungsanlagen mit der vollständigen dynamischen Netzstätzung betrieben werden.

Zu 10.2.4.2 Netzsicherheitsmanagement
Das Netzsicherheitsmanagement (NSM) ist das System zur Umsetzung von Maßnahmen zum Einspeisemanagement nach EEG und Systemverantwortung sowie Verantwortung für Sicherheit und Zuverlässigkeit im Verteilnetz nach EnWG.
und beinhaltet u. a. die Wirkleistungsvorgabe zur Begrenzung der Wirkleistungsabgabe von Erzeugungsanlagen bis zu deren kompletter Abschaltung.

Westnetz greift bei Maßnahmen mit Wirkleistungsvorgabe nicht in die Steuerung der Erzeugungsanlagen ein, sondern stellt lediglich die entsprechenden Signale auf der jeweils vorhandenen Schnittstelle (z. B. Ausgänge des Fernwirk-Gateways) gemäß technischer Ausführung zur Verfügung. Siehe hierzu auch die detaillierte Spezifikation der fernwirktechnischen Anbindung auf der Internetseite der Westnetz.

Priorisierung

Netz- und systemrelevante Vorgaben zum Verhalten von Erzeugungsanlagen haben immer Vorrang vor marktrelevanten Vorgaben.

Technische Spezifikation

In Abhängigkeit von der Energieart, der Leistungsgröße und der Spannungsebene der Einspeisung kommen unterschiedliche technische Einrichtungen zum Einsatz: 10(20)-kV-Netz

<table>
<thead>
<tr>
<th>10-/20-kV-Netze</th>
<th>Anlagenart</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsart</td>
<td>Photovoltaik</td>
<td>EEG (ohne PV) oder KWGK</td>
</tr>
<tr>
<td>> 0 kW(p) und <= 30 kW(p)</td>
<td>Funkrundsteuerung mit 4 Befehlsausgaben 100 %, 60 %, 30 % und 0 %*** oder Begrenzung der am Verknüpfungpunkt ihrer Anlage mit dem Netz die maximale Wirkleistungseinspeisung auf 70 Prozent der installierten Leistung in kWp Keine Ist-Leistungserfassung</td>
<td>keine Anforderung</td>
</tr>
<tr>
<td>> 30 kW(p) und <= 100 kW(p)</td>
<td>Funkrundsteuerung mit 4 Befehlsausgaben 100 %, 60 %, 30 % und 0 %*** Keine Ist-Leistungserfassung</td>
<td></td>
</tr>
<tr>
<td>> 100 kW(p) und <= 475 kW(p)</td>
<td>Funkrundsteuerung mit 4 Befehlsausgaben 100 %, 60 %, 30 % und 0 %*** Ist-Leistungserfassung über die Fernanbindung des Zählers.</td>
<td></td>
</tr>
<tr>
<td>> 475 kW(p)</td>
<td>Fernwirktechnik gemäß Kapitel 6.3.2 und Westnetz-Spezifikation mit Sollwert-Stellbefehl (100 %-0 %) in 10 Stufen** Ist-Leistungserfassung über Messwertaufbindung an die Fernwirktechnik</td>
<td></td>
</tr>
</tbody>
</table>
Technische Anschlussbedingungen Mittelspannung Westnetz (Stand 01.04.2019) – Seite 34/84

Ergänzungen zur VDE-AR-N 4110 „TAR Mittelspannung“

<table>
<thead>
<tr>
<th>Leistungsklasse</th>
<th>Anlagenart</th>
<th>EEG (ohne PV) oder KWGK</th>
<th>Sonstige (konventionell)</th>
</tr>
</thead>
</table>
| > 0 kW(p) und <= 30 kW(p) | Funkrundsteuerung mit 4 Befehlausgaben 100 %, 60 %, 30 % und 0 %*** oder Begrenzung der am Verknüpfungspunkt ihrer Anlage mit dem Netz die maximale Wirkleistungseinspeisung auf 70 Prozent der installierten Leistung in kWp | keine Anforderung | Funkrundsteuerung mit 4 Befehlausgaben 100 %, 60 %, 30 % und 0 %***
Ist-Leistungserfassung über die Fernanbindung des Zählers. |
| > 30 kW(p) und <= 100 kW(p) | Funkrundsteuerung mit 4 Befehlausgaben 100 %, 60 %, 30 % und 0 %*** | Keine Ist-Leistungserfassung | Ist-Leistungserfassung über Messwertanbindung an die Fernwirktechnik |
| > 100 kW(p) | Fernwirktechnik gemäß Kapitel 6.3.2 und Westnetz-Spezifikation mit Sollwert-Stellbefehl (100 %-0 %) in 10 Stufen** Ist-Leistungserfassung über Messwertanbindung an die Fernwirktechnik | | |

* jeweils für die Summe von Anlagen, die gleichartige Energien einsetzen und über denselben Netzanschlusspunkt mit dem Netz verbunden sind (analog EEG-Definition)

** Nach Vorgabe der Westnetz kann anstelle der Fernwirktechnik auch ein Funkrundsteuerempfänger zum Einsatz kommen.

*** sofern verfügbar, kann Westnetz statt eines Funkrundsteuerempängers auch den Einsatz eines intelligenten Messsystems (iMSys) mit Steuerbox fordern.

Westnetz kann im Einzelfall eine andere technische Einrichtung vorgeben.

Funkrundsteuerempfänger (FRE)

Es kommt ein Funkrundsteuerempfänger gemäß Westnetz-Spezifikation zum Einsatz (siehe Internetseite der Westnetz).

Der Funkrundsteuerempfänger ist durch den Anlagenbetreiber auf einem Zählerplatz nach DIN 43870, Teil 1 mit Dreipunktbefestigung zu installieren.

Der Mindestabstand zwischen der Antenne des Funkrundsteuerempfängers und anderen elektronischen Geräten (wie z.B. dem Einspeisezähler oder einem Umrichter mit Leistungselektronik) beträgt zudem für Anlagengrößen < 100 kW 60 cm. In Einzelfällen und insbesondere für Anlagen >= 100 kW sind in der Regel größere Abstände erforderlich.

Im Falle einer Begrenzung der Wirkleistungsabgabe gibt Westnetz auf die vereinbarte Anschlusswirkleistung \(P_{AV} \) bezogene Sollwerte in den Stufen 100 %/60 %/30 %/0 % vor. Diese Werte werden über die Funkrundsteuerung übertragen und anhand vier potentialfreier Relaiskontakte (je \(P_{AV} \)-Stufe ein Kontakt) wie nachfolgend aufgeführt zur Verfügung gestellt.

Für PV-Anlagen mit einer Anschlussleistung ≤ 100 kWp wird durch Westnetz lediglich die Umsetzung der Sollwerte 100 % und 0 % gefordert. Sollwertvorgaben der Westnetz auf die Werte 30 % und 60 % können dazu hinsichtlich ihrer Wirkung auf den Sollwert 0 % umgelegt werden. Eine Vergütung erfolgt lediglich für die Höhe der angeforderten Abregelung.
Da der Anlagenbetreiber die Sollwerte der Westnetz in seiner Anlagensteuerung umsetzen muss, besteht kein Direkteingriff der Westnetz in die Kundenanlage.

Betriebsspannung: 230 V_{AC}

<table>
<thead>
<tr>
<th>K 1</th>
<th>K 2</th>
<th>K 3</th>
<th>K 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

Betriebsspannung: 230 V_{AC}

K 1 100 %_{P_{AV}} (keine Reduzierung der Einspeiseleistung)
K 2 60 %_{P_{AV}} (Reduzierung auf maximal 60 % der Einspeiseleistung)
K 3 30 %_{P_{AV}} (Reduzierung auf maximal 30 % der Einspeiseleistung)
K 4 0 %_{P_{AV}} (keine Einspeisung)

Fernwirktechnik

Es kommt eine Fernwirktechnik gemäß Westnetz-Spezifikation zum Einsatz (siehe Internetseite der Westnetz).

Für den in diesem Kapitel beschriebenen Signalumfang erfolgt dabei die Mitnutzung der in Kap. 6.3.2 beschriebenen Einrichtung. Der Signalumfang ist in Anhang C4 aufgeführt. Details zu den Anforderungen an die Signale sind der o.g. Spezifikation zu entnehmen.

Im Falle einer Begrenzung der Wirkleistungsabgabe gibt Westnetz auf die vereinbarte Anschlusswirkleistung_{P_{AV}} bezogene Sollwerte vor. Hierbei werden die Sollwerte in einem definierten Verfahren übertragen (Details siehe Spezifikation). Die Übergabe des Sollwertes der Wirkleistungsabgabe erfolgt als skalierte Sollwert-Stellbefehle mit fest vereinbarten Stufen von jeweils 10 % zwischen 0 % und 100 % der maximalen Wirkleistung_{P_{AV}}. Die Rückmeldung aus der Erzeugungsanlage erfolgt über einen skalierten Messwert.

Die Übermittlung der IST-Einspeiseleistung an Westnetz erfolgt über die Fernwirktechnik. Hierbei werden die erforderlichen Messgrößen über die Fernwirktechnik zur Verfügung gestellt (Details siehe Spezifikation).

Zu 10.2.4.3 Wirkleistungsanpassung bei Über- und Unterfrequenz
Der Anschlussnehmer teilt Westnetz den Wert der anfänglichen Zeitverzögerung T_V mit, wenn diese mehr als 2 s beträgt. In diesem Fall klärt Westnetz die Zulässigkeit mit dem relevanten Übertragungsnetzbetreiber.

Zu 10.2.5 Kurzschlussstrombeitrag der Erzeugungsanlage

Zu 10.2.5.1 Allgemeines
- Keine Ergänzung -

Zu 10.2.5.2 Beitrag zum Kurzschlussstrom

Bei Typ-1-Anlagen oder Anlagen > 1 MVA sind dem Netzbetreiber zudem grundsätzlich folgende Informationen der Erzeugungsanlage für Netzersatzäquivalente zu übergeben:

- die nach DIN EN 60909-0 (VDE 0102) für die gesamte Erzeugungsanlage ermittelte Kurzschlussmitimpedanz $Z_{(1)}$
- Kurzschlussnullimpedanz $Z_{(0)}$ sowie Kurzschlussgegenimpedanz $Z_{(2)}$
- den für die über Vollumrichter angeschlossenen Erzeugungseinheiten resultierenden Beitrag $I_{k3''}^{PF}$
- die resultierenden Beiträge für unsymmetrische Fehler $I_{k2''}^{PF}$ sowie $I_{k1''}^{PF}$.

Zu 10.2.5.3 Überprüfung der Schutzparametrierung
- Keine Ergänzung -

Zu 10.3 Schutzeinrichtungen und Schutzeinstellungen

Zu 10.3.1 Allgemeines
- Keine Ergänzung -

Zu 10.3.2 Kurzschlusschutzeinrichtungen des Anschlussnehmers
- Keine Ergänzung -

Zu 10.3.3 Entkupplungsschutzeinrichtungen des Anschlussnehmers

Zu 10.3.3.1 Allgemeines

Der übergeordnete Entkupplungsschutz und der Entkupplungsschutz an den Erzeugungseinheiten müssen an unterschiedliche Wandler/Messpunkte angeschlossen werden und wirken auf zwei separate Schaltgeräte.

Zu 10.3.3.2 Spannungsschutzeinrichtungen
- Keine Ergänzung -

Zu 10.3.3.3 Frequenzschutzeinrichtungen

Um den ungewollten Teilnetzbetrieb eines lokalen öffentlichen Netzes zu vermeiden ist bei an das Mittelspannungsnetz angeschlossenen Bezugsanlagen mit (integrierten) teilnetzbetriebsfähigen Erzeugungsanlagen der Frequenzrückgangsschutz ($f<49,5$ Hz) auf 49,5 Hz einzustellen.

Zu 10.3.3.4 Q-U-Schutz

Bei Erzeugungsanlagen mit eingeschränkter dynamischer Netzstützung oder Erzeugungsanlagen < 1 MVA kann auf den Q-U-Schutz verzichtet werden. In diesem Fall muss der Q-U-Schutz jedoch nachrüstbar sein und auf Anforderung der Westnetz nachgerüstet werden. Für Erzeugungsanlagen mit Anschluss an die Sammelschiene eines Westnetz-Umspannwerkes ist die Meldung „Auslösung Q-U-Schutz“ über das Steuerkabel (für die Mitnahmeschaltung) der Westnetz zur Verfügung zu stellen.
Zu 10.3.3.5 Übergeordneter Entkupplungsschutz

<table>
<thead>
<tr>
<th>Nennhilfsspannung</th>
<th>U_H = 100 ... 230 V AC, 50 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nennspannung</td>
<td>U_n = 100/110 V AC, 50 Hz</td>
</tr>
<tr>
<td>Rückfallverhältnis</td>
<td>≥ 0,95</td>
</tr>
<tr>
<td>Einstellbereich</td>
<td>U>>: 1,0 ... 1,3 x U_n,</td>
</tr>
<tr>
<td></td>
<td>U>: 0,1 ... 1,0 x U_n</td>
</tr>
<tr>
<td></td>
<td>Auflösung mindestens 0,01 x U_n</td>
</tr>
<tr>
<td>Verzögerungszeit</td>
<td>t_0>>: t_0> unverzögert ... 200 s,</td>
</tr>
<tr>
<td></td>
<td>t_0< unverzögert ... 10 s,</td>
</tr>
<tr>
<td></td>
<td>Auflösung mindestens 0,1 s</td>
</tr>
<tr>
<td>zu überwachende Messgröße</td>
<td>Leiter-Leiter-Spannung</td>
</tr>
<tr>
<td>Toleranzen</td>
<td>Spannungsanregung 5 % vom Einstellwert,</td>
</tr>
<tr>
<td></td>
<td>Verzögerungszeiten 3 % bzw. 20 ms</td>
</tr>
<tr>
<td>kommandofähige Schaltkontakte für Auslösung</td>
<td></td>
</tr>
</tbody>
</table>

Die Meldungen „Auslösung U>>“ und „Auslösung U>“ müssen bis zur manuellen Quittierung (z.B. bei Einsatz eines Fallklappenrelais) auch bei Ausfall der Netzspannung sichtbar erhalten bleiben.

Zu 10.3.3.6 Entkupplungsschutz an den Erzeugungsanlagen

Im Zuge der Inselnetzerkennung (Teilnetzbildung) sind derzeit keine weiteren Entkupplungsschutzfunktionen gefordert.

Zu 10.3.4 Anschluss der Erzeugungsanlage an die Sammelschiene eines Umspannwerks

Zu 10.3.4.1 Kurzschlussschutzseinrichtungen des Anschlussnehmers

Steuerkabel/Mitnahmeschaltung

Bei Anschluss an die Sammelschiene eines Westnetz-eigenen Umspannwerkes wird in Abhängigkeit der bestehenden Netzverhältnisse ein Leerrohr bzw. ein Steuerkabel für eine Mitnahmeschaltung für die Auslösung des Leistungsschalters in der Übergabestation oder für weitere Schutzfunktionen benötigt. In Einzelfällen ist die Mitnahmeschaltung auch bei Anschlüssen im Mittelspannungsnetz erforderlich. Einzelheiten zur Ausführung der Mitnahmeschaltung sind in Anhang K aufgeführt. Im Rahmen der Projektierung ist eine konkrete Umsetzung mit Westnetz abzustimmen. Die Kosten für die Herstellung der Mitnahmeschaltung trägt der Anschlussnehmer.

Bei vorhandener und aktiver Mitnahmeschaltung wird die Übertragung einer Schutzauslösung über diesen Weg in die turnusmäßigen Schutzprüfungen durch Westnetz einbezogen.

In bestimmten Fällen ist zusätzlich beispielsweise der Aufbau von Signalvergleichsschutzseinrichtungen bzw. Schaltermitnahmen erforderlich.
Zu 10.3.4.2 Entkupplungsschutzeinrichtungen des Anschlussnehmers

Zu 10.3.4.2.1 Übergeordneter Entkupplungsschutz

Sofern mit dem Anlagenbetreiber nicht anders vereinbart, sind die empfohlenen Einstellwerte für den Schutz einer Erzeugungsanlage am Netzanschlusspunkt bei Anschluss an die Sammelschiene eines UW umzusetzen.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Einstellbereich des Schutzrelais</th>
<th>Schutzrelais-Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungssteigerungsschutz U>></td>
<td>1,00 – 1,30 Uₙ₀</td>
<td>1,20 Uₓ₁₀₀</td>
</tr>
<tr>
<td>Spannungssteigerungsschutz U></td>
<td>1,00 – 1,30 Uₙ₀</td>
<td>1,10 Uₓ₁₀₀</td>
</tr>
<tr>
<td>Spannungsrückgangsschutz U<</td>
<td>0,10 – 1,00 Uₙ₀</td>
<td>0,80 Uₓ₁₀₀</td>
</tr>
<tr>
<td>Blindleistungsrichtungs-</td>
<td>0,70 – 1,00 Uₙ₀</td>
<td>0,85 Uₓ₁₀₀</td>
</tr>
<tr>
<td>/Unterspannungsschutz (Q >> & U<)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Am Netzanschlusspunkt ist die Umsetzung eines Frequenzsteigerungsschutzes f > bzw. eines Frequenzrückgangsschutzes f < nicht erforderlich.

Zu 10.3.4.2.2 Entkupplungsschutz an den Erzeugungseinheiten

Sofern mit dem Anlagenbetreiber nicht anders vereinbart, sind die empfohlenen Einstellwerte für den Schutz an der Erzeugungseinheit bei Anschluss der Erzeugungsanlage an die Sammelschiene eines UW umzusetzen.

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Einstellbereich des Schutzrelais</th>
<th>Schutzrelais-Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungssteigerungsschutz U>></td>
<td>1,00 – 1,30 Uₙ₀</td>
<td>1,25 Uₓ₁₀₀</td>
</tr>
<tr>
<td>Spannungsrückgangsschutz U<</td>
<td>0,10 – 1,00 Uₙ₀</td>
<td>0,80 Uₓ₁₀₀</td>
</tr>
<tr>
<td>Spannungsrückgangsschutz U<<</td>
<td>0,10 – 1,00 Uₙ₀</td>
<td>0,30 Uₓ₁₀₀</td>
</tr>
<tr>
<td>Frequenzsteigerungsschutz f></td>
<td>50,0 – 55,0 Hz</td>
<td>52,5 Hz</td>
</tr>
<tr>
<td>Frequenzsteigerungsschutz f></td>
<td>50,0 – 55,0 Hz</td>
<td>51,5 Hz</td>
</tr>
<tr>
<td>Frequenzrückgangsschutz f<</td>
<td>45,0 – 50,0 Hz</td>
<td>47,5 Hz</td>
</tr>
</tbody>
</table>

 Falls die Erzeugungseinheit nur bis zu der geforderten Netzfrequenz von 51,5 Hz betrieben werden kann, ist als Frequenzsteigerungsschutz eine Frequenzstufe mit 51,5 Hz/s 100 ms zu nutzen. Falls die Erzeugungseinheit nicht vollständig bis zu einer Netzfrequenz von 52,5 Hz betrieben werden kann, ist der Wert von 52,5 Hz auf den technisch maximal möglichen Wert zwischen 51,5 Hz und 52,5 Hz einzustellen.

Zu 10.3.4.3 Gesamtübersicht zum Schutzkonzept bei Anschluss der Erzeugungsanlage an die Sammelschiene eines Umspannwerks

- Keine Ergänzung -

Zu 10.3.5 Anschluss der Erzeugungsanlage im Mittelspannungsnetz

Zu 10.3.5.1 Allgemeines

- keine Ergänzung -

Zu 10.3.5.2 Kurzschlusschutzeinrichtungen des Anschlussnehmers

Die Lastschalter-Sicherungs-Kombination ist als Lasttrennschalter-Sicherungs-Kombination auszuführen.

Zu 10.3.5.3 Entkupplungsschutzeinrichtungen des Anschlussnehmers

Zu 10.3.5.3.1 Übergeordneter Entkupplungsschutz
Sofern mit dem Anschlussnehmer nicht anders vereinbart, sind die empfohlenen Einstellwerte für den Schutz einer Erzeugungsanlage am Netzanschlusspunkt bei Anschluss im Mittelspannungsnetz umzusetzen.

Funktionen und Einstellbereiche

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Einstellbereich des Schutzrelais</th>
<th>Schutzrelais-Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungssteigerungsschutz U>></td>
<td>1,00 – 1,30 U_n</td>
<td>1,20 U_c</td>
</tr>
<tr>
<td>Spannungssteigerungsschutz U></td>
<td>1,00 – 1,30 U_n</td>
<td>1,10 U_c</td>
</tr>
<tr>
<td>Spannungsrückgangsschutz U<</td>
<td>0,10 – 1,00 U_n</td>
<td>0,80 U_c</td>
</tr>
<tr>
<td>Blindleistungsrichtungs-/Unterspannungsschutz (Q & U<)</td>
<td>0,70 – 1,00 U_n</td>
<td>0,85 U_c</td>
</tr>
</tbody>
</table>

Am Netzanschlusspunkt ist die Umsetzung eines Frequenzsteigerungsschutzes f > bzw. eines Frequenzrückgangsschutzes f < nicht erforderlich.

Zu 10.3.5.3.2 Entkupplungsschutz an den Erzeugungseinheiten

Sofern mit dem Anlagenbetreiber nicht anders vereinbart, sind die empfohlenen Einstellwerte für den Schutz an der Erzeugungseinheit bei Anschluss der Erzeugungsanlage im Mittelspannungsnetz umzusetzen. Da im Netz der Westnetz eine AWE zum Einsatz kommt, gelten folgende Einstellwerte:

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Einstellbereich des Schutzrelais</th>
<th>Schutzrelais-Einstellwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spannungssteigerungsschutz U>></td>
<td>1,00 – 1,30 U_n</td>
<td>1,25 U_NS</td>
</tr>
<tr>
<td>Spannungsrückgangsschutz U<</td>
<td>0,10 – 1,00 U_n</td>
<td>0,80 U_NS</td>
</tr>
<tr>
<td>Spannungsrückgangsschutz U<<</td>
<td>0,10 – 1,00 U_n</td>
<td>0,45 U_NS</td>
</tr>
<tr>
<td>Frequenzsteigerungsschutz f></td>
<td>50,0 – 55,0 Hz</td>
<td>52,5 Hz C</td>
</tr>
<tr>
<td>Frequenzsteigerungsschutz f></td>
<td>50,0 – 55,0 Hz</td>
<td>51,5 Hz C</td>
</tr>
<tr>
<td>Frequenzrückgangsschutz f<</td>
<td>45,0 – 50 Hz</td>
<td>47,5 Hz</td>
</tr>
</tbody>
</table>

falls die Erzeugungseinheit nur bis zu der geforderten Netzfrequence von 51,5 Hz betrieben werden kann, ist als Frequenzsteigerungsschutz eine Frequenzstufe mit 51,5 Hz/s 100 ms zu nutzen. Falls die Erzeugungseinheit nicht vollständig bis zu einer Netzfrequence von 52,5 Hz betrieben werden kann, ist der Wert von 52,5 Hz auf den technisch maximal möglichen Wert zwischen 51,5 Hz und 52,5 Hz einzustellen.

Zu 10.3.5.4 – 10.3.6

- Keine Ergänzung -

Zu 10.4 Zuschaltbedingungen und Synchronisierung

Zu 10.4.1 Allgemeines

- Keine Ergänzung -

Zu 10.4.2 Zuschalten nach Auslösung durch Schutzeinrichtungen

Die Wiederzuschaltung der gesamten Erzeugungsanlage erfolgt unter Einhaltung der Kriterien der Anschlussbewertung (ggf. erforderliche stufenweise Zuschaltung der Erzeugungseinheiten und/oder der Transformatorleistung zur Einhaltung der zulässigen Netzrückwirkungen).

Übergabestationen mit Automatiken zur Wiederzuschaltung / Fernsteuerungen verfügen über Fern-/Ort-Umschalter, die bei einer Ortsteuerung die Automatiken/Fernsteuerbefehle unterbinden (siehe auch Kapitel 6.3.2). Außerdem sind derartige Übergabeschaltfelder mit dem Hinweisschild „Anlage ist ferngesteuert/fernüberwacht“ an der Mittellansungs-Schaltanlage zu kennzeichnen.

Beie Ausbefehl der Mitnahmeschaltung (siehe Kapitel 10.3.4.1 und Anhang K) muss die Wiedereinschaltung über Automatik/Fernsteuerung solange gesperrt werden bis ein Freigabesignal durch Westnetz ansteht.

Zu 10.4.3 Zuschaltung mit Hilfe von Synchronisierungseinrichtungen
Für Erzeugungseinheiten, die netzsynchron zugeschaltet werden müssen, ist an geeigneter Stelle eine Synchronisierseinrichtung vorzusehen. Während die Synchronisierseinrichtung bei nicht inselbetriebsfähigen Erzeugungsanlagen zweckmäßigerweise dem Generatorschalter zugeordnet wird, ist bei inselbetriebsfähigen Erzeugungsanlagen zusätzlich eine Synchronisierseinrichtung am Kuppelschalter vorzusehen. Eine automatische Parallelschalteneinrichtung ist vorzusehen.

Sofern mit dem Anlagenbetreiber nicht anders vereinbart, sind die in der VDE-AR-N 4110 aufgeführten Werte einzustellen.

Zu 10.4.4 Zuschaltung von Asynchrongeneratoren
- Keine Ergänzung -

Zu 10.4.5 Kuppelschalter
Beie inselbetriebsfähigen Anlagen ist zusätzlich eine Synchronisierungseinrichtung am Kuppelschalter, der den inselbetriebsfähigen Teil der Kundenanlage mit dem öffentlichen Netz bzw. dem nicht inselbetriebsfähigen Teil der Kundenanlage kuppelt, vorzusehen.

Zu 10.5 Weitere Anforderungen an Erzeugungsanlagen
- Keine Ergänzung -

Zu 10.6 Modelle

Westnetz beabsichtigt, in Zukunft die EZA-Modelle auch für Anlagen ≥ 135 kW einzufordern und den Umfang hinsichtlich dynamischer Berechnungen und Rechnerlauffähigkeit (z.B. CGMES-Schnittstelle / CIM-Format) auszuweiten.

Zu 11 Nachweis der elektrischen Eigenschaften für Erzeugungsanlagen

Zu 11.5 Inbetriebsetzungsphase
Zu 11.5.2 Inbetriebsetzung der Erzeugungseinheiten, des EZA-Reglers und ggf. weiterer Komponenten
Es ist die Funktionskette von der Empfangseinrichtung (Funksendsteuerempfänger bzw. Fernwirktechnik) bis zur Umsetzung der Steuerbefehle in der Anlagensteuerung sowie die Empfangsberichtigung der Empfangseinrichtung zu prüfen.

In Anlagen ≥ 135 kW mit Einspeisung in die MS-Ebene ist darüber hinaus der fehlerfreie Empfang über eine manuelle Sollwertvorgabe aus der netzführenden Stelle der Westnetz zu prüfen.

Hierzu stellt Westnetz eine Rufnummer zur Verfügung, unter der eine Sollwertvorgabe durch Westnetz oder den Anlagenbetreiber angefordert werden kann. Für den Funktionstest der Einrichtung zum Empfang und zur Weitergabe der Wirkleistungsvorgabe muss die Erzeugungsanlage in Betrieb sein. In jedem Fall hat der Anlagenbetreiber Westnetz eine Bestätigung des ordnungsgemäßen Anschlusses und der ordnungsgemäßen Inbetriebsetzung des für den Empfang und die Weitergabe der Wirkleistungsvorgabe installierten Gerätes und der Wirkung auf die Anlagensteuerung der
Erzeugungsanlage vorzulegen. Hierfür stellt Westnetz ein entsprechendes Formular auf seiner Internetseite zur Verfügung. Darüber hinaus behält sich Westnetz vor die Inbetriebnahmeprüfung wiederholen zu lassen.

Zu 11.5.5 Betriebsphase
Der Anlagenbetreiber hat die folgenden Unterlagen alle vier Jahre zu erstellen und auf Verlangen beim Netzbetreiber vorzulegen:

2) Schutzprüfprotokoll der Schutzeinrichtungen am Netzanschlusspunkt und an den Erzeugungseinheiten.

3) Funktionsprüfung der Hilfsenergieversorgung der Sekundärtechnik der Übergabestation.

5) Einstellprotokoll der Erzeugungseinheiten und Komponenten nach 11.5.3.

Zu 12 Prototypen-Regelung

Die Mindestanforderungen an die der Westnetz im Zuge des Netzanschlusses von Prototypen zu übergebende Elektroplanung sind im Anhang J genauer beschrieben. Die dort hinterlegten Formblätter sind 8 Wochen vor Baubeginn der Westnetz ausgefüllt einzureichen.
Anhang

Zu Anhang A Begriffe
 - Keine Ergänzung -

Zu Anhang B Erläuterungen
 - Keine Ergänzung -
Zu Anhang C Weitere Festlegungen

Zu Anhang C.4 Prozessdatenumfang

Der nachfolgend definierte Prozessdatenumfang ist in den beschriebenen Anwendungsfällen grundsätzlich umzusetzen. Im Einzelfall kann Westnetz einen reduzierten Prozessdatenumfang vorgeben.

<table>
<thead>
<tr>
<th>Steuerbefehle</th>
<th>Kategorie</th>
<th>Funktionsweise</th>
<th>Wertaussage/Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungsschalterfall/HH Sicherungsauslösung</td>
<td>Stör- und Warnmeldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
</tr>
<tr>
<td>Entschlussrichtung vorwärts (in Richtung Kundenanlage)</td>
<td>Stör- und Warnmeldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
</tr>
<tr>
<td>Leistungschafter Störung</td>
<td>Stör- und Warnmeldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
</tr>
<tr>
<td>Ausfall Hilfenergieversorgung</td>
<td>Stör- und Warnmeldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
</tr>
<tr>
<td>Ausfall Automat. Spannungswandler</td>
<td>Stör- und Warnmeldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
</tr>
<tr>
<td>Schutzströmung</td>
<td>Stör- und Warnmeldung</td>
<td>Einzelmeldung</td>
<td>0 bis 2500</td>
</tr>
<tr>
<td>FWT-Einrichtung STOER</td>
<td>Stör- und Warnmeldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
</tr>
<tr>
<td>FWT-Einrichtung WARNG</td>
<td>Stör- und Warnmeldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
</tr>
<tr>
<td>Leiterströme</td>
<td>Messwert</td>
<td>I_{L1}, I_{L2}, I_{L3}</td>
<td>Wert für 20 kV 0,0-25,0 A</td>
</tr>
<tr>
<td>Leiter- Erde- Spannungen</td>
<td>Messwert</td>
<td>U_{L1N}, U_{L2N}, U_{L3N}</td>
<td>Wert mit Vorzeichen -50% P_{Inst} bis +50% P_{Inst} (P_{Inst} ist hier der größere Wert von P_{Inst,B} und P_{Inst,E})</td>
</tr>
<tr>
<td>Eine Leiter-Leiter Spannung</td>
<td>Messwert</td>
<td>U_{L1}</td>
<td>Wert mit Vorzeichen -50% Q_{Inst} bis +50% Q_{Inst}</td>
</tr>
<tr>
<td>Wirkleistung²</td>
<td>Messwert</td>
<td>P mit Vorzeichen</td>
<td>Binär kW</td>
</tr>
<tr>
<td>Blindleistung²</td>
<td>Messwert</td>
<td>Q mit Vorzeichen</td>
<td>Binär kVAR</td>
</tr>
</tbody>
</table>

Tabelle C.1: Basis-Prozessdatenumfang für alle fernwirkenchnisch angebundenen Kundenanlagen (sofern die entsprechenden Prozessdaten funktional anfallen)
Wirkleistungswerte < 0 entsprechen einer Erzeugungsleistung; Werte > 0 einer Bezugsleistung. Bei verschiedenen Primärenergieträgern ist die Wirkleistung getrennt für jeden Primärenergieträger aufzubereiten.

Blindleistungswerte > 0 entsprechen einem untererregten Betrieb der Erzeugungsanlage, Werte < 0 einem übererregten Betrieb der Erzeugungsanlage.

Ein positives Vorzeichen bedeutet, dass sich die Erzeugungsanlage untererregt verhalten soll. Bei negativem Vorzeichen soll sie übererregt verhalten. (ANMERKUNG: Die Definition wurde abweichend vom mathematischen Zusammenhang so für diese Anwendung gewählt.)

Die Wirkleistung, die von der Erzeugungsanlage am Netzan schlusspunkt bei aktuellem Primärenergieangebot (z.B. Windgeschwindigkeit, Globalstrahlung) zur Verfügung gestellt werden könnte, unter der Annahme, dass alle Erzeugungseinheiten zur Verfügung stehen (z.B. keine Wartung, Anlagenfehlausfall) und kein Eingriff von außen erfolgt (z.B. durch den Netzbetreiber, die Direktvermarktung). Die real ins Netz gespeiste Wirkleistung \(P \) ist vom Betrag her dann geringer als \(P_{\text{verfügbar, max}} \) wenn nicht alle Erzeugungseinheiten zur Verfügung stehen oder ein Eingriff von außen erfolgt. Um eine Anlage als Referenzanlage für beispielsweise die Hochrechnung der eingespeisten Wirkleistung in einem Netzbiet nutzen zu können, kann bei nicht zur Verfügung stehenden Erzeugungseinheiten (z.B. Eingriff von außen) nicht die Wirkleistung \(P \) genutzt werden, da damit unterstellt würde, dass bei allen Anlagen in dem von der Hochrechnung betroffenem Netzbiet, Erzeugungseinheiten nicht zur Verfügung stünden bzw. ein Eingriff von außen erfolgte. Daher kann für eine Referenzanlage der Wert \(P_{\text{verfügbar, max}} \) genutzt werden.

Bindleistung, die die Erzeugungsanlage im aktuellen Betriebspunkt maximal zur Verfügung stellen könnte.

Inklusive rückspeisefähige Ladeeinrichtungen für Elektrofahrzeuge

Tabelle C.2: Zusätzlicher Prozessdatenumfang für Erzeugungsanlagen, Speicher und Ladeeinrichtungen für Elektrofahrzeuge
<table>
<thead>
<tr>
<th>Steuerbefehle</th>
<th>Kategorie</th>
<th>Funktion</th>
<th>Wertebereich/ Auflösung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasttrennschalter Eingangsschaltfeld (je Eingangsschaltfeld)</td>
<td>Steuerbefehl</td>
<td>EIN-schalten</td>
<td>Binär</td>
<td>-</td>
</tr>
<tr>
<td>Lasttrennschalter Eingangsschaltfeld (je Eingangsschaltfeld)</td>
<td>Steuerbefehl</td>
<td>AUS-schalten</td>
<td>Binär</td>
<td>-</td>
</tr>
<tr>
<td>Lasttrennschalter Eingangsschaltfeld (je Eingangsschaltfeld)</td>
<td>Meldung</td>
<td>EIN-geschaltet</td>
<td>Binär</td>
<td>-</td>
</tr>
<tr>
<td>Lasttrennschalter Eingangsschaltfeld (je Eingangsschaltfeld)</td>
<td>Meldung</td>
<td>AUS-geschaltet</td>
<td>Binär</td>
<td>-</td>
</tr>
<tr>
<td>Fern-/Ort-Umschalter</td>
<td>Meldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
<td>Binär</td>
</tr>
<tr>
<td>Leiterstörmen (je Eingangsschaltfeld)</td>
<td>Messwert</td>
<td>I_{k1}, I_{k2}</td>
<td>0 bis 2500</td>
<td>1</td>
</tr>
<tr>
<td>Leiter-Ende-Spannungen (je Eingangsschaltfeld)</td>
<td>Messwert</td>
<td>U_{1k}, U_{2k}, U_{3k}</td>
<td>1-3 Werte</td>
<td>0,0-15,0</td>
</tr>
<tr>
<td>Leiter-Leiter-Spannung (je Eingangsschaltfeld)</td>
<td>Messwert</td>
<td>$U_{L_{1}}, U_{L_{2}}, U_{L_{3}}$</td>
<td>Wert für 20 kV</td>
<td>0,0-15,0</td>
</tr>
<tr>
<td>Wirkleistung a (je Eingangsschaltfeld)</td>
<td>Messwert</td>
<td>P_{w} mit Vorzeichen</td>
<td>Wert mit Vorzeichen</td>
<td>-120 % P_{av} bis 120 % P_{av} (P_{av} ist hier der größere Wert von $P_{av,B}$ und $P_{av,E}$)</td>
</tr>
<tr>
<td>Blindleistung b (je Eingangsschaltfeld)</td>
<td>Messwert</td>
<td>Q_{b} mit Vorzeichen</td>
<td>Wert mit Vorzeichen</td>
<td>-50 % Q_{inst} bis +50 % Q_{inst}</td>
</tr>
</tbody>
</table>

Tabelle C.3: Zusätzlicher Prozessdatenumfang bei durch Westnetz fernschaltbaren Eingangsschaltfeldern in 10- und 20-kV-Netzen (vgl. Kapitel 6.2.2.1)

<table>
<thead>
<tr>
<th>Steuerbefehle</th>
<th>Kategorie</th>
<th>Funktion</th>
<th>Wertebereich/ Auflösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übergabe-Schalter (NOT-AUS)</td>
<td>Steuerbefehl</td>
<td>AUS-schalten</td>
<td>Binär</td>
</tr>
<tr>
<td>Leitungsabgangtrener Eingangsschaltfeld (nur 30 kV)</td>
<td>Steuerbefehl</td>
<td>EIN-schalten</td>
<td>Binär</td>
</tr>
<tr>
<td>Leitungsabgangtrener Eingangsschaltfeld (nur 30 kV)</td>
<td>Steuerbefehl</td>
<td>AUS-schalten</td>
<td>Binär</td>
</tr>
<tr>
<td>Leitungsabgangserder Eingangsschaltfeld (nur 30 kV)</td>
<td>Steuerbefehl</td>
<td>EIN-schalten</td>
<td>Binär</td>
</tr>
<tr>
<td>Übergabe-Schalter</td>
<td>Meldung</td>
<td>AUS-geschaltet</td>
<td>Binär</td>
</tr>
<tr>
<td>Leitungsabgangtrener Eingangsschaltfeld (nur 30 kV)</td>
<td>Meldung</td>
<td>geschlossen / EIN-geschaltet</td>
<td>Binär</td>
</tr>
<tr>
<td>Leitungsabgangtrener Eingangsschaltfeld (nur 30 kV)</td>
<td>Meldung</td>
<td>geöffnet / AUS-geschaltet</td>
<td>Binär</td>
</tr>
<tr>
<td>Leitungsabgangserder Eingangsschaltfeld (nur 30 kV)</td>
<td>Meldung</td>
<td>geschlossen / EIN-geschaltet</td>
<td>Binär</td>
</tr>
<tr>
<td>Leitungsabgangserder Eingangsschaltfeld (nur 30 kV)</td>
<td>Meldung</td>
<td>geöffnet / AUS-geschaltet</td>
<td>Binär</td>
</tr>
<tr>
<td>Fern-/Ort-Umschalter</td>
<td>Meldung</td>
<td>Einzelmeldung</td>
<td>Binär</td>
</tr>
</tbody>
</table>

Tabelle C.4: Zusätzlicher Prozessdatenumfang bei Netzanschluss im 30-kV-Netz (vgl. Kapitel 6.3.2)
Zu Anhang D Beispiele für Mittelspannungs-Netzanschlüsse

Bild D1a: 10(20)-kV-Anbindung mit einem Abgangsfeld; Transformator ≤ 1 MVA (z.B. 630 kVA)

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigem Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

1) kapazitive Spannungsanzeige wird empfohlen

2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungsbestimmung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandlern notwendig.

Bei gasisolierter Bauweise sind Spannungswandler baulich bedingt auch aus Netzicht vor dem Stromwandler möglich.

3) In Abstimmung mit Westnetz ist bis zu einer Leistung von max. 630 kVA je Zählung auch eine Zählung auf der Niederspannungsseite möglich.
Bild D1b: 10(20)-kV-Anbindung mit einem Abgangsfeld; Transformator > 1 MVA

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungs- bereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

1) kapazitive Spannungsanzeige wird empfohlen

2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.

Bei gasisoliert Bauweise sind Spannungswandler baulich bedingt auch aus Netzsicht vor dem Stromwandler möglich.

3) Im Abgangsfeld ist durch die Übergabeschalteinrichtung eine Trennfunktion zu realisieren. Diese ist durch einen
 - Lasttrennschalter oder
 - Trennschalter oder
 - Leistungsschalter in Einschubtechnik oder
 - Leistungstrennschalter

auszuführen.

Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.

4) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.
Bild D1c: 10(20)-kV-Anbindung bei Einschleifung der Übergabestation und einer vereinbarten Netzanschlusskapazität für den Energiebezug > 500 kVA
(Der Fokus dieses Bildes liegt auf den Eingangsschaltfeldern)

1) Standard sind hier Ohmsche Teiler (Genauigkeit: ≤ 0,5%). Andere Technologien sind nur nach vorheriger Zustimmung der Westnetz zulässig.

2) Kapazitive Spannungsanzeige wird empfohlen. Erdschlussrichtungsanzeiger sind gemäß Kapitel 6.2.2.2 vorzusehen.

3) Die Lasttrennschalter sind durch Westnetz fernsteuerbar auszuführen und entsprechend kommunikativ einzubinden. Eine Fernsteuerung der Erdungsschalter ist nicht erforderlich.
Bild D2a: 10(20)-kV-Anbindung mit zwei Abgangsfeldern; Transformatoren ≤ 1 MVA mit Übergabe-Lasttrennschalter

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungs bereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

Bei Einschleifung der Übergabestation und einer vereinbarten Netzanschlusskapazität für den Energiebezug > 500 kVA sind fernschaltbare Eingangsschaltfelder gemäß Bild 1c vorzusehen.

1) kapazitive Spannungsanzeige wird empfohlen

2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.

Bei gasisolerter Bauweise sind Spannungswandler baublich bedingt auch aus Netzssicht vor dem Stromwandler möglich.

3) In Abstimmung mit Westnetz ist bis zu einer Leistung von max. 630 kVA je Zahlung auch eine Zahlung auf der Niederspannungsseite möglich.
Bild D2b: 10(20)-kV-Anbindung mit drei Abgangsfeldern (ein Transformator >1 MVA, Kabelabgangsfeld [kundeneigenes MS-Netz], ein Transformator ≤ 1 MVA) mit Übergabe-Lasttrennschalter

*Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeldentfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

Bei Einschleifung der Übergabestation und einer vereinbarten Netzanschlusskapazität für den Energiebezug > 500 kVA sind fernschaltbare Eingangsschaltfelder gemäß Bild 1c vorzusehen.

1) kapazitive Spannungsanzeige wird empfohlen
2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.

Bei gasisolierter Bauweise sind Spannungswandler baulich bedingt auch aus Netzsicht vor dem Stromwandler möglich.

3) Im Abgangsfeld ist durch die Übergabeschalteinrichtung eine Trennfunktion zu realisieren. Diese ist durch einen - Lasttrennschalter oder - Trennschalter oder - Leistungsschalter in Einschubtechnik oder - Leistungstrennschalter auszuführen.

Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.

4) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.
5) Als Ersatz für Leistungsschalter im Abgangsfeld, kann ein Leistungsschalter im Übergabefeld realisiert werden.
6) Erdschlussrichtungserfassung (alternativ im Abgangsfeld zum kundeneigenen MS-Netz)
Ergänzungen zur VDE-AR-N 4110 „TAR Mittelspannung“

Bild D3a: UA-Sammelschieneanschluss einer Erzeugungsanlage

Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetzabzuschalten.

1) kapazitive Spannungsanzeige wird empfohlen
2) MS-seitige Strom- und Spannungswandler
 Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.
 Bei gasisolierter Bauweise sind Spannungswandler baulich bedingt auch aus Netzsicht vor dem Stromwandler möglich.
3) Im Abgangsfeld ist durch die Übergabeschalteinrichtung eine Trennfunktion zu realisieren. Diese ist durch einen - Lasttrennschalter oder - Trennschalter oder - Leistungsschalter in Einschubtechnik oder - Leistungstrennschalter auszuführen.
 Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.
4) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetzabzuschalten.
*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

1) kapazitive Spannungsanzeige wird empfohlen

2) MS-seitige Strom- und Spannungswandler

Bei gasisolierter Bauweise sind Spannungswandler baulich bedingt auch aus Netzleitungen vor dem Stromwandler möglich.

3) Im Abgangsfeld ist durch die Übergabeschalteinrichtung eine Trennfunktion zu realisieren. Diese ist durch einen
 - Lasttrennschalter oder
 - Trennschalter oder
 - Leistungsschalter in Einschubtechnik oder
 - Leistungstrennschalter

 auszuführen.

 Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.

4) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.

5) Als Ersatz für Leistungsschalter im Abgangsfeld, kann ein Leistungsschalter im Übergabefeld realisiert werden.
Bild D4b: 10(20)-KV-Anbindung von zwei Erzeugungseinheiten (Bestands-Erzeugungseinheit; neue Erzeugungseinheit)

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungs bereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

1) kapazitive Spannungsanzeige wird empfohlen

2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anzuschließen. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.

Bei gasisoliert Bauweise sind Spannungswandler baulich bedingt auch aus Netzschicht vor dem Stromwandler möglich.

3) Im Abgangsfall ist durch die Übergabeschalt einrichtung eine Trennfunktion zu realisieren. Diese ist durch einen
 - Lasttrennschalter oder
 - Trennschalter oder
 - Leistungsschalter in Einschubtechnik oder
 - Leistungstrennschalter

 auszuführen.

 Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.

4) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.
Bild D5a: 10(20)-kV-Anbindung einer Mischanlage über einen Transformator

**) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld im Verfügungsbereich der Übergabestation), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

Bei Einschleifung der Übergabestation und einer vereinbarten Netzanschlusskapazität für den Energiebezug > 500 kVA sind fernschaltbare Eingangsschaltfelder gemäß Bild 1c vorzusehen.

1) kapazitive Spannungsanzeige wird empfohlen

2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.

Bei gasisolierter Bauweise sind Spannungswandler baulich bedingt auch aus Netzsicht vor dem Stromwandler möglich.

3) Bei einer Stufung des vorgelagerten, kundeneigenen MS/NS-Transformators der Erzeugungseinheit sind die Auslösebedingungen des Q-U-Schutzes so anzupassen, dass der genannte Spannungswert auf der Mittelspannungsseite realisiert wird.
Bild D5b: 10(20)-kV-Anbindung einer Mischanlage über je einen Transformator für Bezug und Einspeisung

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

Bei Einschleifung der Übergabestation und einer vereinbarten Netzanschlusskapazität für den Energiebezug > 500 kVA sind fernschaltbare Eingangsschaltfelder gemäß Bild 1c vorzusehen.

1) kapazitive Spannungsanzeige wird empfohlen
2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.

Bei gasisolierter Bauweise sind Spannungswandler baulich bedingt auch aus Netzschutz vor dem Stromwandler möglich.

3) Im Abgangsfeld ist durch die Übergabeschalteinrichtung eine Trennfunktion zu realisieren. Diese ist durch einen
 - Lasttrennschalter oder
 - Leistungsschalter in Einschubtechnik oder
 - Leistungstrennschalter
 auszuführen.

 Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.

4) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.

5) Als Ersatz für Leistungsschalter im Abgangsfeld, kann ein Leistungsschalter im Übergabefeld realisiert werden.
Bild D5c: 10(20)-kV-Anbindung einer Mischanlage mit nachgelagerter Station

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

Bei Einschleifung der Übergabestation und einer vereinbarten Netzanhangskapazität für den Energiebezug > 500 kVA sind fernschaltbare Eingangsschaltfelder gemäß Bild 1c vorzusehen.

1) kapazitive Spannungsanzeige wird empfohlen
2) MS-seitige Strom- und Spannungswandler
3) Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.
4) Bei gasisoliertem Bauweise sind Spannungswandler baulich bedingt auch aus Netzsicht vor dem Stromwandler möglich.
5) Im Abgangsfeld ist durch die ÜbergabeschaltEinrichtung eine Trennfunktion zu realisieren. Diese ist durch einen
 - Lasttrennschalter
 - Trennschalter
 - Leistungsschalter in Einschubtechnik
 - Leistungstrennschalter
 - auszuführen.
 Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.
6) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.
7) Als Ersatz für Leistungsschalter im Abgangsfeld, kann ein Leistungsschalter im Übergabefeld realisiert werden.
8) Erdschlussrichtungserfassung (alternativ im Abgangsfeld zum kundeneigenen MS-Netz)
9) Bei einer Stufung des vorgelagerten, kundeneigenen MS/NS-Transformators der Erzeugungseinheit sind die Auslösebedingungen des Q-U-Schutzes so anzupassen, dass der genannte Spannungswert auf der Mittelspannungsseite realisiert werden.

Erdungspunkt
(kapazitive Spannungsanzeige)

Verriegelungsfunktion
Wirkungslinie des
Entkupplungsschutzes
Bild D5d: 10(20)-kV-Anbindung einer Erzeugungsanlage mit nachgelagerter Station

Neue Übergabestation

Erdungsfestpunkt (wenn technisch möglich) kapazitive Spannungsanzeige Verriegelungsfunktion Wirkungslinie des Entkoppelungsschutzes

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbereich liegenden Schaltfelder nach Aufforderung der Wetnetz abzuschalten.

Bei Einschleifung der Übergabestation und einer vereinbarten Netzanbindschlusskapazität für den Energiebezug > 500 kVA sind fernschaltbare Eingangsschaltfelder gemäß Bild 1c vorzusehen.

1) kapazitive Spannungsanzeige wird empfohlen

2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Entkoppelungsfunktion erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbaumwandler notwendig.

Bei gasisolierter Bauweise sind Spannungswandler baulich bedingt auch aus Netzsicht vor dem Stromwandler möglich.

3) Im Abgangsfeld ist durch die Übergabeschaltanlage eine Trennfunktion zu realisieren. Diese ist durch einen
 - Lasttrennschalter
 - Trennschalter oder
 - Leistungsschalter in Einschubtechnik oder
 - Leistungstrennschalter

 auszuführen.

Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.

4) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.

5) Als Ersatz für Leistungsschalter im Abgangsfeld, kann ein Leistungsschalter im Übergabefeld realisiert werden.

6) Entkoppelungsfunktion (alternativ im Abgangsfeld zum kundeneigenen MS-Netz)

*) Wenn der Lasttrennschalter im netzseitigen Eingangsschaltfeld entfallen soll (nur möglich bei einem netzseitigen Eingangsschaltfeld), ist der Anlagenbetreiber verpflichtet, die in seinem Verfügungsbe reich liegenden Schaltfelder nach Aufforderung der Westnetz abzuschalten.

Bei Einschleifung der Übergabestation und einer vereinbarten Netzanschlusskapazität für den Energiebezug > 500 kVA sind fernsehbare Eingangsschaltfelder gemäß Bild 1c vorzusehen.

1) kapazitive Spannungsanzeige wird empfohlen
2) MS-seitige Strom- und Spannungswandler

Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.

Bei gasisoliertem Bauweise sind Spannungswandler baulich bedingt auch aus Netzsicht vor dem Stromwandler möglich.

3) Im Abgangsfeld ist durch die Übergabeschalt einrichtung eine Trennfunktion zu realisieren. Diese ist durch einen
 - Lasttrennschalter oder
 - Trennschalter oder
 - Leistungsschalter in Einschubtechnik oder
 - Leistungstrennschalter
 auszuführen.

 Ein Trennschalter ist nur in Verbindung mit Verriegelungen zugelassen.

4) Der Lasttrennschalter im Abgangsfeld kann auch vor dem Leistungsschalter angeordnet sein.
5) Erdschlussrichtungserfassung
6) Bei einer Stufung des vorgelagerten, kundeneigenen MS/NS-Transformators der Erzeugungseinheit sind die Auslösebedingungen des Q-U-Schutzes so anzupassen, dass der genannte Spannungswert auf der Mittelspannungsseite realisiert werden.
Bild D6: 30-kV-Anbindung einer Erzeugungsanlage im Netz

1) kapazitive Spannungsanzeige wird empfohlen
2) MS-seitige Strom- und Spannungswandler
 Bei kundeneigenen MS-Leitungen außerhalb der Übergabestation ist eine Erdschlussrichtungserfassung erforderlich und auch an diese Wandler anschließbar. Beim wattmetrischen Verfahren werden jedoch separate Kabelumbauwandler notwendig.
3) Der Lasttrennschalter im netzseitigen Eingangsschaltfeld kann auch als LS-Einschub mit Lasttrennfunktion realisiert werden. In diesem Fall liegt die Verfügungsbereichsgrenze zwischen Einschub und Leistungsschalter.
4) Im Falle einer Netzstörung kann der Leistungsschalter durch die netzführende Stelle der Westnetz ausgeschaltet werden.
5) MS-Doppelkabelanschluss (bis zu einem Querschnitt von 2x3x500 Al) an der Schaltanlage in der Übergabestation.
<table>
<thead>
<tr>
<th>Anlagen-Typ</th>
<th>Formulare</th>
<th>Parameter</th>
<th>Prototypenbescheinigung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 E.10 E.11 E.12 E.13 E.14 E.15 E.16 E.17</td>
<td>E.1 L1</td>
<td>E.2 L2</td>
</tr>
<tr>
<td>Bezugsanlagen</td>
<td>AN AN AN AE AE AN</td>
<td>> 950 kW</td>
<td>135 kW bis 950 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Änderungen und Erweiterungen von Bestandsanlagen</td>
<td>AN AN AE AE AN AN NB AB AB ZS ZS ZS ZS NB .60</td>
<td></td>
<td>AN</td>
</tr>
<tr>
<td>Standard</td>
<td>AN AN AE AE AN AN NB AB AB ZS ZS ZS ZS NB .60</td>
<td></td>
<td>AN</td>
</tr>
<tr>
<td>Proto-typen</td>
<td>AN AN AE AE AN AN NB AB AB ZS ZS ZS ZS NB .60 AN</td>
<td>ZS</td>
<td>AN .1</td>
</tr>
<tr>
<td>135 kW bis 950 kW</td>
<td>AN AN AE AE AN AN NB AB AB ZS ZS ZS ZS NB .60 AN</td>
<td>ZS</td>
<td>AN .1</td>
</tr>
<tr>
<td>Einzelnachweisverfahren</td>
<td>AN AN AE AE AN AN NB AB AB ZS ZS ZS NB .60</td>
<td></td>
<td>AN</td>
</tr>
<tr>
<td>Erzeugungsanlagen < 135 kW nach VDE-AR-N 4105</td>
<td>E.1</td>
<td>E.2 E.3 E.4 E.5</td>
<td>E.8 E.9 E.6</td>
</tr>
<tr>
<td>< 135 kW .6</td>
<td>AN</td>
<td>AN AN AE ZS</td>
<td></td>
</tr>
</tbody>
</table>

AE = Anlagenerrichter (verantwortlicher Ansprechpartner ggü. dem VNB ist der Anschlussnehmer bzw. Anschlussnutzer)

AB = Anlagenbetreiber (verantwortlicher Ansprechpartner ggü. dem VNB ist der Anschlussnehmer bzw. Anschlussnutzer)

NB = Netzbetreiber

ZS = Zertifizierungsstelle (verantwortlicher Ansprechpartner ggü. dem VNB ist der Anschlussnehmer bzw. Anschlussnutzer)

* .6 ist nur einzureichen, sofern relevante Errichtungen oder Änderungen an der Kundenstation vorgenommen wurden.

* .15 in Einzelfällen erforderlich

* .10 gilt nach Beendigung des Prototypenstatus

* .11 im Einzelfall sind ggf. weitere Nachweise erforderlich (Zertifikate für 70%-Begrenzung, PAV-E-Überwachung, Symmetrieinrichtung; Herstellerkonformitätsbescheinigung für EnFluRi-Sensor)
Zu Anhang F Störschreiber
- Keine Ergänzung -

Anhang G Prüfleisten

Es sind vollisolierte und fingerberührungssichere Prüfbuchsen nach DGUV Vorschrift 3, geeignet zur Aufnahme von 4 mm Sicherheitsmessleitungen, zu verwenden.

Die einzelnen Klemmen sind hinsichtlich ihrer Funktion eindeutig zu beschriften. Die Funktionen der Klemmen (Trennung, Brücken, Prüfbuchsen) sind gemäß der Darstellung in Anhang H aufzubauen.

Anhang H Wanderverdrahtung

H.1 Wanderverdrahtung – mittelspannungsseitige Messung

Die Anbindung von Wandlern und Zählern, Schutzgeräten und Fernwirkgeräten ist im Folgenden als zusammenhängende Einheit dargestellt. Optionale Anlagenkonfigurationen oder Spannungsebenen sind gekennzeichnet.

Die Klemmen sind mit ihrer jeweiligen Funktion zu kennzeichnen.

Die Anbindung der Wandler an ein separates Fernwirkgerät ist jeweils nur dann aufzubauen, wenn eine informationstechnische Anbindung gefordert ist und die Messwerterfassung nicht über das Schutzgerät erfolgt.
Bild H.1.a Anbindung der Strom- und Spannungswandler an Zähler, mittelspannungsseitige Messung mit drei Stromwandlern und drei Spannungswandlern

Zähler

Klemmenleiste
Zählerwechseltafel

Klemmenleiste
Zählerschrank

Möglichkeit, die Klemme aufzutrennen

Möglichkeit, den Wandler kurz zu schließen

Aderkennzeichnung

1 2 3 4 5 6 7 8 9 10

Das Bild gilt für ein Rechts-Drehfeld

Bild H.1.b Anbindung der Strom- und Spannungswandler an Zähler, mittelspannungsseitige Messung mit drei Stromwandrern und zwei 2-poligen Spannungswandler (nur Bezugsanlagen)
Aufbau Zählerwechseltafel (ZWT), Absicherung Spannungspfade

Die für die Zählung einzusetzenden Zähler- bzw. Zählerwechselschränke sind in der Form auszuführen, dass die Zählerwechseltafel Größe 1/II passgenau einsetzbar ist und die erforderlichen Schiebetrennklemmen (Buchsenklemmen) sowie die Absicherungen für die Spannungspfade der Messwandler eingebaut sind.

Für den Anschluss- und Klemmenbereich muss eine plombierbare Abdeckung/Abdeckhaube aufsetzbar sein.

Die Spezifikationen zur "Ausführung der Zählerwechseltafel" und zu den "Anforderungen an die Zählerwechselschränke" sind einzuhalten und können bei Westnetz angefordert werden.

Sicherungselement

Es sind Sicherungseinsätze 10x38 (z.B. Fabrikat Siemens Typ SITOR Zylindersicherungs-Einsatz) Betriebsklasse aR, mit einem Bemessungsstrom (Nennstrom) von 3 A zu verwenden.

Querschnitte und Längen (Zählung)

Es gelten die Richtwerte der VDE-AR-N 4110 (Kapitel 7.5).

Verlegeart und Kabeltypen

Die Wandlerleitungen sind in kurzschluss- und erdschlussssicherer Bauart nach DIN VDE 0100-520 auszuführen.

Am Zählkern/an der Wicklung der Wandler dürfen keine Betriebsgeräte angeschlossen werden.

Erdungsmaßnahmen

Sonderbauformen von Messwandlern (Kabelumbau/SF₆)

Aufbau einer Zwischenleiste

Klemmleiste Zählerschrank

Aderkennzeichnung

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>L2</td>
<td>L3</td>
<td>L4</td>
<td>L5</td>
<td>L6</td>
<td>L7</td>
<td>L8</td>
<td>L9</td>
<td>N</td>
</tr>
</tbody>
</table>

Feste Brücke

Möglichkeit, die Klemme aufzutrennen

Möglichkeit, den Wandler kurzschließen

Klemmen 3-6: 16 x LRTK 50
7 x ULS z. B. 50
Leitungsschutzschalter sind kurzschluss sicher zu verlegen. Die angegebenen Werte sind als Musterwerte anzusehen und müssen ggfs. auf die Anlagenverhältnisse bemessen werden. Die Auslösung des Leitungsschutzschalters ist über einen Hilfskontakt in das Meldekonzept (WDL SPG FEHL) einzubeziehen.

Bild H.3 Anbindung Stromwandler an Schutz und Prüfeinrichtung

Bei Wandlern mit sekundärseitigem Anschluss über eingegossene Leitungen wird die Erdung des Anschlusses S1 (k) sowie die Auswahl der Wicklung nicht am Sekundäranschluss des Stromwandlers, sondern an der Wandlerklemmenleiste vorgenommen.

Die dargestellten Klemmen für Schutzfunktionen und für die Hilfsspannung sind in ihrer Funktion für die Anbindung von Schutzprüfeinrichtungen dargestellt, nicht bzgl. ihrer räumlichen Lage.
Bild H.4 Anbindung Stromwandler an Fernwirkgerät (optional)

Bei Wandlern mit sekundärseitigem Anschluss über eingegossene Leitungen wird die Erdung des Anschlusses S1 (k) sowie die Auswahl der Wicklung nicht am Sekundäranschluss des Stromwandlers, sondern an der Wandlerklemmenleiste vorgenommen.

H.2 Wandlerverdrahtung – niederspannungsseitige Messung

Siehe hierzu die TAB Niederspannung der Westnetz.
Anhang I Anforderungen an die EZA-Modelle gemäß Kapitel 10.6

Gemäß den Anforderungen des Kapitel 10.6 der VDE-AR N 4110 ist der Netzbetreiber berechtigt zur Durchführung von Netzberechnungen (stationär und im Zeitbereich als RMS-Simulation) rechnerlauffähige Simulationsmodelle der Erzeugungsanlage (aggregiertes EZA-Modell) vom Anlagenbetreiber zu verlangen.

Um dieser Anforderung Genüge zu tun, ist eine Ausweisung der unten gezeigten Berechnungsparameter erforderlich, welche im Rahmen der Anlagenzertifizierung ermittelt werden können.

Leistungswerte der Erzeugungsanlage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Berechnungsparameter</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschlussleistung</td>
<td>S_A</td>
<td>MVA</td>
</tr>
<tr>
<td>Anschlusswirkleistung</td>
<td>P_A</td>
<td>MW</td>
</tr>
<tr>
<td>max. Wirkleistung nach Abzug der Leitungsverluste</td>
<td>P_max</td>
<td>MW</td>
</tr>
<tr>
<td>Am NAP wirkender k-Faktor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anfangs-Kurzschlusswechselstrom</td>
<td>I_k"</td>
<td></td>
</tr>
<tr>
<td>Stoßkurzschlusswechselstrom</td>
<td>I_p</td>
<td></td>
</tr>
</tbody>
</table>

P-Q-Vermögen der Erzeugungsanlage bei 105 %Uc

<table>
<thead>
<tr>
<th>Wirkleistung der Erzeugungsanlage P_max am NAP</th>
<th>max. untererregte Blindleistung am NAP</th>
<th>max. übererregte Blindleistung am NAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 % P_max (Leerlauf)</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>10 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>20 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>30 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>40 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>50 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>60 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>70 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>80 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>90 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
<tr>
<td>100 % P_max</td>
<td>MVar</td>
<td>MVar</td>
</tr>
</tbody>
</table>
Blind- und Wirkstrom am Netzanschlusspunkt bei Netzfehlern (FRT)
Hinweis: Die Werte sind im Rahmen der FRT-Versuche gem. Kap. 11.4.12.1 bzw. 11.4.12.2 zu ermitteln. Die Berechnung erfolgt analog zu den o.g. Kapiteln mit Bemessungsleistung und den vorgegebenen Verschiebungsfaktor $\cos \varphi$. Die einzutragenden Werte beziehen sich auf den nach Netzfehler eingeschwungenen Zustand.

<table>
<thead>
<tr>
<th>Spannungseinbruchs-</th>
<th>Verschiebungsfaktor $\cos \varphi$ am NAP</th>
<th>Wirkstrom im MTS in A</th>
<th>Blindstrom im MTS in A</th>
<th>Wirkstrom im GGS in A</th>
<th>Blindstrom im GGS in A</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiefe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetrische Fehler (3p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%U_c</td>
</tr>
<tr>
<td>(100% U_c \rightarrow 90 bis 95% U_c)</td>
</tr>
<tr>
<td>0,95_{untererregt}</td>
</tr>
<tr>
<td>%U_c</td>
</tr>
<tr>
<td>(95% U_c \rightarrow 70 bis 80% U_c)</td>
</tr>
<tr>
<td>%U_c</td>
</tr>
<tr>
<td>(95% U_c \rightarrow 45 bis 60% U_c)</td>
</tr>
<tr>
<td>%U_c</td>
</tr>
<tr>
<td>(95% U_c \rightarrow 30 bis 35% U_c)</td>
</tr>
<tr>
<td>%U_c</td>
</tr>
<tr>
<td>(105% U_c \rightarrow 120% U_c, ±2% U_c)</td>
</tr>
</tbody>
</table>

| %U_c |
| (100% U_c \rightarrow 90 bis 95% U_c) |
| 0,95_{untererregt} |
| %U_c |
| (95% U_c \rightarrow 70 bis 80% U_c) |
| %U_c |
| (95% U_c \rightarrow 45 bis 60% U_c) |
| %U_c |
| (95% U_c \rightarrow 30 bis 35% U_c) |
| %U_c |
| (105% U_c \rightarrow 120% U_c, ±2% U_c) |

| %U_c |
| (100% U_c \rightarrow 105% U_c, ±2% U_c) |
| 0,95_{übererregt} |
| %U_c |
| %U_c |
| %U_c |

Bei Typ-1-Anlagen oder Anlagen > 1 MVA sind dem Netzbetreiber zudem grundsätzlich folgende Informationen der Erzeugungsanlage für Netzersatzäquivalente zu übergeben:

die nach DIN EN 60909-0 (VDE 0102) für die gesamte Erzeugungsanlage ermittelte

<table>
<thead>
<tr>
<th>Kurzschlussmitimpedanz $Z_{(1)}$</th>
<th>Ohm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurzschlussnullimpedanz $Z_{(0)}$ sowie Kurzschlussgegenimpedanz $Z_{(2)}$</td>
<td>Ohm</td>
</tr>
<tr>
<td>den für die über Vollumrichter angeschlossenen Erzeugungseinheiten</td>
<td></td>
</tr>
<tr>
<td>resultierenden Beitrag $I_{k_3}^{PF}$</td>
<td>kA</td>
</tr>
<tr>
<td>die resultierenden Beiträge für unsymmetrische Fehler $I_{k_2}^{PF}$ sowie $I_{k_1}^{PF}$</td>
<td>kA</td>
</tr>
</tbody>
</table>
Anhang J Formblatt Prototypen-Regelung

In der Prototypenbestätigung wird dabei bescheinigt, dass die Erzeugungseinheit ein Prototyp ist und grundsätzlich in der Lage ist, die Anforderungen der VDE-AR-N 4110 zu erfüllen.

Die weiterhin auszuführende Elektroplanung der gesamten Erzeugungsanlage soll die folgenden Berechnungen aufweisen.

Anmerkung: Sollten die für die Berechnung erforderlichen Daten im Zuge der Prototypen-Regelung nicht vorliegen, sind ggf. Herstellerangaben oder plausible Annahmen heranzuziehen und mit dem Netzbetreiber abzustimmen.

Die Ergebnisse hierzu sind in dem folgenden Formblatt auszufüllen und beim Netzbetreiber einzureichen.
Basisdaten

<table>
<thead>
<tr>
<th>Bezeichnung Erzeugungsanlage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registrier-Nr. des Netzbetreibers (siehe Einspeisezusage):</td>
</tr>
<tr>
<td>Markstammdatenregister-Nr. (sofern vorhanden):</td>
</tr>
<tr>
<td>Standort der Erzeugungsanlage (PLZ, Ort, ggf. Flurstücknummer):</td>
</tr>
<tr>
<td>Anlagenbetreiber (Firma und Anschrift):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erzeugungseinheiten: (Alt- und Neu-EZE's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl:</td>
</tr>
<tr>
<td>--</td>
</tr>
</tbody>
</table>

Einphasiger Übersichtsschaltplan der Übergabe-station einschließlich Eigentums-, Betriebs-führungs-, Verfügungs- und Bedienbereichsgrenze, Netztransformatoren, Mess-, Schutz- und Steuereinrichtungen (Darstellung, wo die Messgrößen für die Kurzschluss- und die Entkupplungsschutzeinrichtungen erfasst werden und auf welche Schaltgeräte die Schutzeinrichtungen wirken); Darstellung der kundeneigenen MS-Leitungsverbindungen, Kabeltypen, -längen und –querschnitte; Angabe der techn. Kennwerte der nachgelagerten kundeneigenen MS-Schaltanlagen

Maximale Einspeisewirkleistung am Netzanschlusspunkt unter Berücksichtigung der Leitungsverluste (unter Verwendung des P₆₀₀ Wert für die Erzeugungseinheiten)

\[P_{600} = \text{__________ MW} \]

Gewählte Transformatorstufung der EZE-Transformatoren

(OS) ________/_______ (US)
<table>
<thead>
<tr>
<th>Lastflussberechnungen und statische Spannungshaltung</th>
<th>gem. Kap. 10.2 und 11.4.11 der VDE-AR-N 4110</th>
</tr>
</thead>
</table>
| Blindleistungsbereitstellung im Betrieb der EZA gem. Kap. 10.2.2.2 und 10.2.2.3 der VDE-AR-N 4110 am Netzanschlusspunkt (Diagramme zu Berechnungen mit 90 %Uc, 100 %Uc, 110 %Uc bitte separat beifügen) | Die Erzeugungsanlage erfüllt die Anforderungen gem. Kap. 10.2.2.2 und 10.2.2.3 (Bild 5 und Bild 6)
| Ja □ Nein □ |
| Blindleistung der Erzeugungsanlage bei Leerlauf aller Erzeugungseinheiten; Berücksichtigung der parkinternen Transformatoren, Leitungen und sonst. Betriebsmittel (Anforderung: 0,05 Q/Pb inst (untererregt) bzw. 0,02 Q/Pb inst (übererregt) dürfen nicht überschritten werden) | Q_{Leerlauf} = _______ kVar
| untererregt □ übererregt □ |
| Die Erzeugungsanlage erfüllt die Anforderungen gem. Kap. 10.2.2.2 und 10.2.2.3 (Bild 5 und Bild 6) | Ja □ Nein □ |

<table>
<thead>
<tr>
<th>Stabilitätsverhalten 1:</th>
<th>Für die folgenden Betriebspunkte sind die Spannungen am Netzanschlusspunkt (U_{NAP}) und der vom Netzanschlusspunkt am weitesten entfernte Erzeugungseinheit (U_{EZE}) zu berechnen. Die Berechnung hat mit 100 % P_{b inst} zu erfolgen. Die Spannung und die Blindleistung am Netzanschlusspunkt sind hierbei gem. den Varianten a) bis d) variabel zu berechnen.</th>
</tr>
</thead>
</table>
| a) 90 %Uc am NAP mit einer Einspeisung von Q = 0,33 Q/Pb inst (übererregt) | U_{EZE} = __________ % U_{NS}
| Auslösung des EZA- oder EZE-Schutzes?
| Ja □ Nein □ |
| b) 90 %Uc am NAP mit einer Einspeisung von Q = 0 | U_{EZE} = __________ % U_{NS}
| Auslösung des EZA- oder EZE-Schutzes?
| Ja □ Nein □ |
| c) 110 %Uc am NAP mit einer Einspeisung von Q = 0 | U_{EZE} = __________ % U_{NS}
| Auslösung des EZA- oder EZE-Schutzes?
| Ja □ Nein □ |
| d) 110 %Uc am NAP mit einer Einspeisung von Q = 0,33 Q/Pb inst (untererregt) | U_{EZE} = __________ % U_{NS}
| Auslösung des EZA- oder EZE-Schutzes?
| Ja □ Nein □ |

Hinweis: Eine Auslösung des EZE- oder EZA-Entkupplungsschutzes für die o.g. Betriebspunkte ist nicht zulässig (siehe Kap. 10.2.2 Bild 5 der VDE-AR-N 4110). Die Vorgaben zum EZA- und EZE-Schutz sind dem Netzbetreiberfragebogen zu entnehmen. Die gewählte Transformatorstufung ist bei der Wahl des EZE-Schutzes zu berücksichtigen U_{NS} = U_{c} / u mit u=Übersetzungsverhältnis des EZE-Transformators unter Berücksichtigung der gewählten Stufung)
Stabilitätsverhalten 2: Es ist zu gewährleisten, dass bei Verwendung eines vorgelagerten niederspannungsseitigen Entkupplungsschutzes (z.B. EZE-Schutz an einer Transformatorstation) die Erzeugungseinheiten nicht vor dem vorgelagerten Entkupplungsschutz auslösen. Die Schutzeinstellwerte an den Erzeugungseinheiten sind so zu wählen, dass die o.g. Anforderung erfüllt wird.

Hinweis: Bitte verwenden Sie für die jeweiligen Auslösezeiten einen Wert um mind. 100 ms größer als die Netzbetreibervorgabe.

<table>
<thead>
<tr>
<th>Gewählte Schutzeinstellwerte der Erzeugungseinheiten</th>
<th>Vorgelagerter Niederspannungsseitiger Entkupplungsschutz (Zwischenschutz)</th>
<th>Vorgabe zum EZE-Schutz aus Netzbetreiberabfragebogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>U< _______ % U_{NS}</td>
<td>U<< _______ % U_{NS}</td>
<td>U< _______ % U_{NS}</td>
</tr>
<tr>
<td>U<< _______ % U_{NS}</td>
<td>U<< _______ % U_{NS}</td>
<td>U<< _______ % U_{NS}</td>
</tr>
</tbody>
</table>

Die Erzeugungsanlage wurde mit einem vorgelagerten niederspannungsseitigen Entkupplungsschutzes (z.B. EZE-Schutz an einer Transformatorstation) geplant?

Ja [] Nein []

Falls ja, folgende Felder bitte ausfüllen.

Bei Verwendung eines vorgelagerten niederspannungsseitigen Entkupplungsschutzes (z.B. EZE-Schutz an einer Transformatorstation) lösen die EZE nicht vor dem vorgelagerten Entkupplungsschutz aus?

Ja [] Nein []
Stabilitätsverhalten 3

Es ist zu ermitteln, ob bei ungestörtem Netzbetrieb die Erzeugungseinheiten in den LV- bzw. HV-Netzwechseln wechseln.

Die Prüfung erfolgt mit den folgenden Vorgaben:

<table>
<thead>
<tr>
<th>Variante Anschluss an der Sammelschiene einer Umspannanlage:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Spannung am NAP mit 1,05 U_c und einer Blindleistung $Q = 0,33 Q/P_{bus}$ übererregt</td>
</tr>
</tbody>
</table>

Variatne Anschluss im Mittelspannungsnetz:

| 2) Spannung am NAP mit 0,95 U_c und einer Blindleistung $Q = 0 |
| 3) Spannung am NAP mit 1,07 U_c und einer Blindleistung $Q = 0 |

Die Anforderung gilt als erfüllt, wenn bei der Berechnung 1) und 3) die größte Spannungsänderung über alle EZE’s betrachtet $< 1,08 U_{NS}$ beträgt. Bei der Berechnung 2) gilt als Erfolgskriterium, wenn die kleinste Spannungsänderung über alle EZE’s betrachtet $> 0,92 U_{NS}$ beträgt. Die Transformatorstufung ist hierbei zu berücksichtigen.

Berechnungsergebnisse

<table>
<thead>
<tr>
<th>Berechnungsergebnis zu 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_{EZE} = \ \ \ \ \ \ \ \ \ % U_{NS}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berechnungsergebnis zu 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_{EZE} = \ \ \ \ \ \ \ \ \ % U_{NS}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berechnungsergebnis zu 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_{EZE} = \ \ \ \ \ \ \ \ \ % U_{NS}$</td>
</tr>
</tbody>
</table>

Konzept zur Umsetzung der Anforderungen am NAP unter Berücksichtigung der Genauigkeitsanforderungen vorhanden.

(Es gelten die Genauigkeitsbereiche gem. Kap. 10.2.2.3 der VDE-AR-N 4110)

Wirkleistungssteuerung gem. Kap. 10.2.4.1/2 und 11.4.13/14 der VDE-AR-N 4110:

- Konzept zur Umsetzung der NSM-Vorgaben des Netzbetreibers am NAP bis zu den EZE vorhanden

Schutzkonzept gem. Kap. 10.3 und 11.4.17 der VDE-AR-N 4110:

- Kurzschluss- und Entkupplungsschutzschaltungen für den NAP und die EZE (ggf. als zwischengelagerter Schutz) entsprechend Vorgaben des Netzbetreibers sind vorhanden
- Eigenschutz EZE greift Entkupplungsschutz nicht vor
- Prüfleistungsleistungen am NAP und an EZE vorhanden
- Ausreichend dimensionierte netzunabhängige Hilfsenergie am NAP und an den EZE vorhanden
- Ausfall der Hilfsenergie der Schutzeinrichtungen am NAP und an den EZE führt zum unverzögerten Auslösen des Schalters
- Die Schutzeinrichtungen am NAP sind vorhanden und führen beim Ansprechen des zugeordneten Schalters zur:
 - Selbstüberwachung (Life-Kontakt);

Anforderung erfüllt

Anforderung erfüllt

Anforderung erfüllt

Anforderung erfüllt

Anforderung erfüllt
- Ausfallerkennung der Messspannung für den übergeordneten Entkupplungsschutz;
- Ausfallerkennung der Steuerspannung für die Auslösung des Leistungsschalters;
- Überwachung der Auslöseverbindung zwischen Schutzeinrichtung und Schaltgerät bei räumlich getrennter Anordnung

Netzrückwirkungen gem. Kap. 5.4 und 11.4.7 der VDE-AR-N 4110:

| Schnelle Spannungsänderung (ggf. Anforderungen an die Zuschaltung der Maschinen-Transformatoren beachten) | Erzeugungseinheit | % |
| Erzeugungsanlage | % |
| Flicker |
| Oberschwingungen | Bitte als separates Diagramm beifügen inkl. der Zulässigen Grenzwerte
| | Anzahl der Überschreitungen:
| Zwischenharmonische | Bitte als separates Diagramm beifügen inkl. der Zulässigen Grenzwerte
| | Anzahl der Überschreitungen:
| Supraharmnische | Bitte als separates Diagramm beifügen inkl. der Zulässigen Grenzwerte
| | Anzahl der Überschreitungen:
| Zusammenfassung Netzrückwirkungen | ☐ alle Anforderungen erfüllt |

Die vorangegangenen Berechnungen wurden von der folgenden Firma/Person durchgeführt:

Firmenbezeichnung	
Anschrift	
Bearbeiter	
Unterschrift	
Anhang J.2 Formblatt/Checkliste für Erzeugungsanlagen (135 kW ≤ \(P_{\text{max}} \) ≤ 950 kW) gem. Prototypen-Regelung (Kapitel 12 der VDE-AR-N 4110)

<table>
<thead>
<tr>
<th>Basisdaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung Erzeugungsanlage</td>
</tr>
<tr>
<td>Registrier-Nr. des Netzbetreibers (siehe Einspeisezusage):</td>
</tr>
<tr>
<td>Marktstammdatenregister-Nr. (sofern vorhanden):</td>
</tr>
<tr>
<td>Standort der Erzeugungsanlage (PLZ, Ort, ggf. Flurstücknummer):</td>
</tr>
<tr>
<td>Anlagenbetreiber (Firma und Anschrift):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erzeugungseinheiten: (Alt- und Neu-EZE’s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl:</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Einphasiger Übersichtsschaltplan der Übergabe-station einschließlich Eigentums-, Betriebs-führungs-, Verfügungs- und Bedienbereichsgrenze, Netztransformatore, Mess-, Schutz- und Steuereinrichtungen (Darstellung, wo die Messgrößen für die Kurzschluss- und die Entkupplungsschutzeinrichtungen erfasst werden und auf welche Schaltgeräte die Schutzeinrichtungen wirken); Darstellung der kundeneigenen MS-Leitungsverbindungen, Kabeltypen, -längen und –querschnitte; Angabe der techn. Kennwerte der nachgelagerten kundeneigenen MS-Schaltanlagen beigefügt

Maximale Einspeisewirkleistung am Netzanschlusspunkt unter Berücksichtigung der Leitungsverluste (unter Verwendung des \(P_{600} \) Wert für die Erzeugungseinheiten)

\[
P_{600} = \text{____________________________} \text{ MW}
\]

Gewählte Transformatorstufung der EZE-Transformatoren

(US) \(\text{_______/_______} \)
Stabilitätsverhalten 1: Für die folgenden Betriebspunkte sind die Spannungen am Netzanschlusspunkt (U_{NAP}) und der vom Netzanschlusspunkt am weitesten entfernte Erzeugungseinheit (U_{EZE}) zu berechnen. Die Berechnung hat mit 100 % P_{b inst} zu erfolgen. Die Spannung und die Blindleistung am Netzanschlusspunkt sind hierbei gem. den Varianten a) bis d) variabel zu berechnen.

<table>
<thead>
<tr>
<th>Varianten</th>
<th>Beschreibung</th>
<th>Berechnung</th>
<th>Auslösung des EZA- oder EZE-Schutzes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>90 % Uc am NAP mit einer Einspeisung von Q = 0,33 Q/P_{b inst} (übererregt)</td>
<td>U_{EZE} = __________ % U_{NS}</td>
<td>Ja [] Nein []</td>
</tr>
<tr>
<td>b)</td>
<td>90 % Uc am NAP mit einer Einspeisung von Q = 0</td>
<td>U_{EZE} = __________ % U_{NS}</td>
<td>Auslösung des EZA- oder EZE-Schutzes? Ja [] Nein []</td>
</tr>
<tr>
<td>c)</td>
<td>110 % Uc am NAP mit einer Einspeisung von Q = 0</td>
<td>U_{EZE} = __________ % U_{NS}</td>
<td>Auslösung des EZA- oder EZE-Schutzes? Ja [] Nein []</td>
</tr>
<tr>
<td>d)</td>
<td>110 % Uc am NAP mit einer Einspeisung von Q = 0,33 Q/P_{b inst} (untererregt)</td>
<td>U_{EZE} = __________ % U_{NS}</td>
<td>Auslösung des EZA- oder EZE-Schutzes? Ja [] Nein []</td>
</tr>
</tbody>
</table>

Hinweis: Eine Auslösung des EZE- oder EZA-Entkupplungsschutzes für die o.g. Betriebspunkte ist nicht zulässig (siehe Kap. 10.2.2 Bild 5 der VDE-AR-N 4110). Die Vorgaben zum EZA- und EZE-Schutz sind dem Netzbetreiberfragebogen zu entnehmen. Die gewählte Transformatorstufung ist bei der Wahl des EZE-Schutzes zu berücksichtigen U_{NS} = U_{c} / ü mit ü = Übersetzungsverhältnis des EZE-Transformators unter Berücksichtigung der gewählten Stufung.)
Stabilitätsverhalten 2:
Es ist zu gewährleisten, dass bei Verwendung eines vorgelagerten niederspannungsseitigen Entkupplungsschutzes (z.B. EZE-Schutz an einer Transformatorstation) die Erzeugungseinheiten nicht vor dem vorgelagerten Entkupplungsschutz auslösen. Die Schutzeinstellwerte an den Erzeugungseinheiten sind so zu wählen, dass die o.g. Anforderung erfüllt wird. Hinweis: Bitte verwenden Sie für die jeweiligen Auslösezeiten einen Wert um mindestens 100 ms größer als die Netzbetreibervorgabe.

Die Erzeugungsanlage wurde mit einem vorgelagerten niederspannungsseitigen Entkupplungsschutzes (z.B. EZE-Schutz an einer Transformatorstation) geplant?

<table>
<thead>
<tr>
<th>Ja</th>
<th>Nein</th>
</tr>
</thead>
</table>

Falls ja, folgende Felder bitte ausfüllen.

<table>
<thead>
<tr>
<th>Gewählte Schutzeinstellwerte der Erzeugungseinheiten</th>
<th>Vorgelagerter Niederspannungsseitiger Entkupplungsschutz (Zwischenschutz)</th>
<th>Vorgabe zum EZE-Schutz aus Netzbetreiberabfragebogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>U< _______ % U<NS</td>
<td>U<< _______ % U<NS</td>
<td>U< _______ % U<NS</td>
</tr>
<tr>
<td>U<< _______ % U<NS</td>
<td>U<< _______ % U<NS</td>
<td>U<< _______ % U<NS</td>
</tr>
</tbody>
</table>

Bei Verwendung eines vorgelagerten niederspannungsseitigen Entkupplungsschutzes (z.B. EZE-Schutz an einer Transformatorstation) lösen die EZE nicht vor dem vorgelagerten Entkupplungsschutz aus?

<table>
<thead>
<tr>
<th>Ja</th>
<th>Nein</th>
</tr>
</thead>
</table>

Konzept zur Umsetzung der Anforderungen am NAP unter Berücksichtigung der Genauigkeitsanforderung vorhanden.

(Es gelten die Genauigkeitsbereiche gem. Kap. 10.2.2.3 der VDE-AR-N 4110)

<table>
<thead>
<tr>
<th>Anforderung erfüllt</th>
</tr>
</thead>
</table>

Wirkleistungssteuerung gem. Kap. 10.2.4.1/2 und 11.4.13/14 der VDE-AR-N 4110:

<table>
<thead>
<tr>
<th>Konzept zur Umsetzung der NSM-Vorgaben des Netzbetreibers am NAP bis zu den EZE vorhanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konzept erfüllt Anforderungen</td>
</tr>
</tbody>
</table>

Schutzkonzept gem. Kap. 10.3 und 11.4.17 der VDE-AR-N 4110:

<table>
<thead>
<tr>
<th>Kurzschluss- und Entkupplungsschutzeinrichtungen für den NAP und die EZE (ggf. als zwischengelagerter Schutz) entsprechend Vorgaben des Netzbetreibers sind vorhanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderung erfüllt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eigenschutz EZE greift Entkupplungsschutz nicht vor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderung erfüllt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfklemmleisten am NAP und an EZE vorhanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderung erfüllt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausreichend dimensionierte netzunabhängige Hilfsenergie am NAP und an den EZE vorhanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderung erfüllt</td>
</tr>
</tbody>
</table>
Ausfall der Hilfsenergie der Schutzeinrichtungen am NAP und an den EZE führt zum unverzögerten Auslösen des Schalters: ☐ Anforderung erfüllt

Die Schutzeinrichtungen am NAP sind vorhanden und führen beim Ansprechen des zugeordneten Schalters zur:

- Selbstüberwachung (Life-Kontakt);
- Ausfallerkennung der Messspannung für den übergeordneten Entkupplungsschutz;
- Ausfallerkennung der Steuerspannung für die Auslösung des Leistungsschalters;
- Überwachung der Auslöseverbindung zwischen Schutzeinrichtung und Schaltgerät bei räumlich getrennter Anordnung: ☐ alle Anforderungen erfüllt

Die vorangegangenen Berechnungen wurden von der folgenden Firma/Person durchgeführt:

<table>
<thead>
<tr>
<th>Firmenbezeichnung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschrift</td>
<td></td>
</tr>
<tr>
<td>Bearbeiter</td>
<td></td>
</tr>
<tr>
<td>Unterschrift</td>
<td></td>
</tr>
</tbody>
</table>
Anhang K Mitnahmeschaltung

Für den Aufbau einer Mitnahmeschaltung gemäß Kapitel 10.3.4.1 bzw. Bild 21 der VDE-AR-N 4110 ist zwischen Übergabestation und Mittelspannungsgebäude der Umspannanlage entweder ein

- 12-adriges Steuerkabel des Typs NYCY 0,6/1 kV gemäß VDE 0276 oder
- ein Steuerkabel als LWL-Kabel

to verlegen.

Im Falle eines 12-adrigen Steuerkabels ist der Querschnitt des Steuerkabels in Abhängigkeit der angeschlossenen Sekundärtechnik und der Spannung der Hilfsenergieversorgung im Rahmen der Projektierung durch den Betreiber der Erzeugungsanlage zu ermitteln und festzulegen. Der Mindestquerschnitt beträgt 2,5 mm². Die Betriebsspannung für die Steuerkabelverbindung zur Westnetz-eigenen Umspannanlage beträgt 24 V DC.

Das Steuerkabel ist an einer dafür zu installierenden Klemmenleiste im Mittelspannungsgebäude der Umspannanlage anzuklemmen, sofern Westnetz keine andere Vorgabe macht.

Über das Steuerkabel werden folgende Schutzfunktionen realisiert:

1) Übertragung der Schutzanregung/Schutzauslösung von Schutzeinrichtungen in der Westnetz-Umspannanlage auf den Leistungsschalter der Übergabestation im Ruhestromverfahren.
Bei fernwirktechnischer Anbindung der Übergabestation kann die Funktion unter 2.) entfallen. Der Aufbau der Mitnahmeschaltung in der Steuerkabelvariante ist im folgenden Bild dargestellt.

Schaltungsaufbau der Steuerkabelverbindung zwischen der Übergabestation und dem Westnetz-eigenen Umspannwerk

Anhang L Parameter Bestandsanlagen (Inbetriebsetzung bis 26.04.2019, außer Übergangsregelung)

Außerdem ist es im Falle von Mischanlagen (zum Beispiel bei der Erweiterung einer bestehenden Erzeugungsanlage um weitere Erzeugungseinheiten) häufig von Interesse, welchen Anforderungen der bestehende Anlagenteil unterliegt.

Zu diesem Zweck stellt Westnetz die bisher geltenden Technischen Anschlussbedingungen auf seiner Internetseite oder auf Nachfrage zur Verfügung.

Eine Übersicht der Zeitpunkte ab denen einige wertwichtige Anforderungen erstmals gefordert wurden, lässt sich nachfolgender Übersicht entnehmen:

Erzeugungsanlagen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geltungsbereich</td>
<td>ab Inbetriebsetzungdatum</td>
<td>ab Datum Antragstellung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statische Spannungshaltung</td>
<td>siehe "Blindleistung" (unten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamische Netzstützung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- keine Netztrennung im Fehlerfall</td>
<td>01.04.2011</td>
<td>01.04.2011</td>
<td>01.01.2013</td>
<td></td>
</tr>
<tr>
<td>- Blindstromeinspeisung im Fehlerfall (nach BDEW-Richtlinie 2008)</td>
<td>01.04.2011</td>
<td>01.04.2011</td>
<td>01.01.2013</td>
<td></td>
</tr>
<tr>
<td>- Blindstromeinspeisung im Fehlerfall (nach SDL Wind V)</td>
<td>01.07.2011</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- kein Blindstrombezug nach Fehlerklärung</td>
<td>01.04.2011</td>
<td>01.04.2011</td>
<td>01.01.2013</td>
<td></td>
</tr>
<tr>
<td>Wirkleistungsabgabe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Netzsicherheitsmanagement</td>
<td>entsprechend der gesetzlichen Vorgaben</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Frequenzverhalten</td>
<td>01.04.2011</td>
<td>01.05.2009</td>
<td>01.01.2009</td>
<td></td>
</tr>
<tr>
<td>Blindleistung</td>
<td>01.04.2011</td>
<td>01.04.2011</td>
<td>01.01.2010</td>
<td></td>
</tr>
<tr>
<td>Zuschaltbedingungen</td>
<td>01.04.2011</td>
<td>01.01.2009</td>
<td>01.01.2009</td>
<td></td>
</tr>
<tr>
<td>Zertifikate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Einheiten- und Anlagenzertifikate</td>
<td>01.04.2011</td>
<td>01.04.2011</td>
<td>01.01.2014 *</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle L.1 Datumsangaben für die Erfüllung der Systemanforderungen

Anmerkungen:
* Die Einheiten- und Anlagenzertifikate konnten für Verbrennungskraftmaschinen, die zwischen dem 01.01.2014 und dem 30.06.2015 angemeldet wurden, unter bestimmten Voraussetzungen bis zum 30.06.2015 nachgereicht werden.
Anhang M Wesentliche Änderungen

In der nachfolgenden Tabelle sind die wesentlichen Änderungen zusammen gestellt, die seit der ersten Version (April 2019) vorgenommen wurden.

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Änderung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>